![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmods | Structured version Visualization version GIF version |
Description: Upper bound for the distance between the values of a bounded linear operator. (Contributed by Mario Carneiro, 22-Oct-2015.) |
Ref | Expression |
---|---|
nmods.n | ⊢ 𝑁 = (𝑆 normOp 𝑇) |
nmods.v | ⊢ 𝑉 = (Base‘𝑆) |
nmods.c | ⊢ 𝐶 = (dist‘𝑆) |
nmods.d | ⊢ 𝐷 = (dist‘𝑇) |
Ref | Expression |
---|---|
nmods | ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐹‘𝐴)𝐷(𝐹‘𝐵)) ≤ ((𝑁‘𝐹) · (𝐴𝐶𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1061 | . . 3 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐹 ∈ (𝑆 NGHom 𝑇)) | |
2 | nghmrcl1 22536 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑆 ∈ NrmGrp) | |
3 | ngpgrp 22403 | . . . . 5 ⊢ (𝑆 ∈ NrmGrp → 𝑆 ∈ Grp) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑆 ∈ Grp) |
5 | nmods.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑆) | |
6 | eqid 2622 | . . . . 5 ⊢ (-g‘𝑆) = (-g‘𝑆) | |
7 | 5, 6 | grpsubcl 17495 | . . . 4 ⊢ ((𝑆 ∈ Grp ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴(-g‘𝑆)𝐵) ∈ 𝑉) |
8 | 4, 7 | syl3an1 1359 | . . 3 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴(-g‘𝑆)𝐵) ∈ 𝑉) |
9 | nmods.n | . . . 4 ⊢ 𝑁 = (𝑆 normOp 𝑇) | |
10 | eqid 2622 | . . . 4 ⊢ (norm‘𝑆) = (norm‘𝑆) | |
11 | eqid 2622 | . . . 4 ⊢ (norm‘𝑇) = (norm‘𝑇) | |
12 | 9, 5, 10, 11 | nmoi 22532 | . . 3 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ (𝐴(-g‘𝑆)𝐵) ∈ 𝑉) → ((norm‘𝑇)‘(𝐹‘(𝐴(-g‘𝑆)𝐵))) ≤ ((𝑁‘𝐹) · ((norm‘𝑆)‘(𝐴(-g‘𝑆)𝐵)))) |
13 | 1, 8, 12 | syl2anc 693 | . 2 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((norm‘𝑇)‘(𝐹‘(𝐴(-g‘𝑆)𝐵))) ≤ ((𝑁‘𝐹) · ((norm‘𝑆)‘(𝐴(-g‘𝑆)𝐵)))) |
14 | nghmrcl2 22537 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝑇 ∈ NrmGrp) | |
15 | 14 | 3ad2ant1 1082 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝑇 ∈ NrmGrp) |
16 | nghmghm 22538 | . . . . . . 7 ⊢ (𝐹 ∈ (𝑆 NGHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | |
17 | 16 | 3ad2ant1 1082 | . . . . . 6 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
18 | eqid 2622 | . . . . . . 7 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
19 | 5, 18 | ghmf 17664 | . . . . . 6 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇)) |
20 | 17, 19 | syl 17 | . . . . 5 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐹:𝑉⟶(Base‘𝑇)) |
21 | simp2 1062 | . . . . 5 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
22 | 20, 21 | ffvelrnd 6360 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐹‘𝐴) ∈ (Base‘𝑇)) |
23 | simp3 1063 | . . . . 5 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ 𝑉) | |
24 | 20, 23 | ffvelrnd 6360 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐹‘𝐵) ∈ (Base‘𝑇)) |
25 | eqid 2622 | . . . . 5 ⊢ (-g‘𝑇) = (-g‘𝑇) | |
26 | nmods.d | . . . . 5 ⊢ 𝐷 = (dist‘𝑇) | |
27 | 11, 18, 25, 26 | ngpds 22408 | . . . 4 ⊢ ((𝑇 ∈ NrmGrp ∧ (𝐹‘𝐴) ∈ (Base‘𝑇) ∧ (𝐹‘𝐵) ∈ (Base‘𝑇)) → ((𝐹‘𝐴)𝐷(𝐹‘𝐵)) = ((norm‘𝑇)‘((𝐹‘𝐴)(-g‘𝑇)(𝐹‘𝐵)))) |
28 | 15, 22, 24, 27 | syl3anc 1326 | . . 3 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐹‘𝐴)𝐷(𝐹‘𝐵)) = ((norm‘𝑇)‘((𝐹‘𝐴)(-g‘𝑇)(𝐹‘𝐵)))) |
29 | 5, 6, 25 | ghmsub 17668 | . . . . 5 ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐹‘(𝐴(-g‘𝑆)𝐵)) = ((𝐹‘𝐴)(-g‘𝑇)(𝐹‘𝐵))) |
30 | 16, 29 | syl3an1 1359 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐹‘(𝐴(-g‘𝑆)𝐵)) = ((𝐹‘𝐴)(-g‘𝑇)(𝐹‘𝐵))) |
31 | 30 | fveq2d 6195 | . . 3 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((norm‘𝑇)‘(𝐹‘(𝐴(-g‘𝑆)𝐵))) = ((norm‘𝑇)‘((𝐹‘𝐴)(-g‘𝑇)(𝐹‘𝐵)))) |
32 | 28, 31 | eqtr4d 2659 | . 2 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐹‘𝐴)𝐷(𝐹‘𝐵)) = ((norm‘𝑇)‘(𝐹‘(𝐴(-g‘𝑆)𝐵)))) |
33 | nmods.c | . . . . 5 ⊢ 𝐶 = (dist‘𝑆) | |
34 | 10, 5, 6, 33 | ngpds 22408 | . . . 4 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴𝐶𝐵) = ((norm‘𝑆)‘(𝐴(-g‘𝑆)𝐵))) |
35 | 2, 34 | syl3an1 1359 | . . 3 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴𝐶𝐵) = ((norm‘𝑆)‘(𝐴(-g‘𝑆)𝐵))) |
36 | 35 | oveq2d 6666 | . 2 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝑁‘𝐹) · (𝐴𝐶𝐵)) = ((𝑁‘𝐹) · ((norm‘𝑆)‘(𝐴(-g‘𝑆)𝐵)))) |
37 | 13, 32, 36 | 3brtr4d 4685 | 1 ⊢ ((𝐹 ∈ (𝑆 NGHom 𝑇) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((𝐹‘𝐴)𝐷(𝐹‘𝐵)) ≤ ((𝑁‘𝐹) · (𝐴𝐶𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 class class class wbr 4653 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 · cmul 9941 ≤ cle 10075 Basecbs 15857 distcds 15950 Grpcgrp 17422 -gcsg 17424 GrpHom cghm 17657 normcnm 22381 NrmGrpcngp 22382 normOp cnmo 22509 NGHom cnghm 22510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-n0 11293 df-z 11378 df-uz 11688 df-q 11789 df-rp 11833 df-xneg 11946 df-xadd 11947 df-xmul 11948 df-ico 12181 df-0g 16102 df-topgen 16104 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-minusg 17426 df-sbg 17427 df-ghm 17658 df-psmet 19738 df-xmet 19739 df-met 19740 df-bl 19741 df-mopn 19742 df-top 20699 df-topon 20716 df-topsp 20737 df-bases 20750 df-xms 22125 df-ms 22126 df-nm 22387 df-ngp 22388 df-nmo 22512 df-nghm 22513 |
This theorem is referenced by: nghmcn 22549 |
Copyright terms: Public domain | W3C validator |