![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmtri | Structured version Visualization version GIF version |
Description: The triangle inequality for the norm of a sum. (Contributed by NM, 11-Nov-2006.) (Revised by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
nmf.x | ⊢ 𝑋 = (Base‘𝐺) |
nmf.n | ⊢ 𝑁 = (norm‘𝐺) |
nmtri.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
nmtri | ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴 + 𝐵)) ≤ ((𝑁‘𝐴) + (𝑁‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ngpgrp 22403 | . . . . 5 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp) | |
2 | 1 | 3ad2ant1 1082 | . . . 4 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐺 ∈ Grp) |
3 | simp3 1063 | . . . 4 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐵 ∈ 𝑋) | |
4 | nmf.x | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
5 | eqid 2622 | . . . . 5 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
6 | 4, 5 | grpinvcl 17467 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ 𝑋) → ((invg‘𝐺)‘𝐵) ∈ 𝑋) |
7 | 2, 3, 6 | syl2anc 693 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((invg‘𝐺)‘𝐵) ∈ 𝑋) |
8 | nmf.n | . . . 4 ⊢ 𝑁 = (norm‘𝐺) | |
9 | eqid 2622 | . . . 4 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
10 | 4, 8, 9 | nmmtri 22426 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ ((invg‘𝐺)‘𝐵) ∈ 𝑋) → (𝑁‘(𝐴(-g‘𝐺)((invg‘𝐺)‘𝐵))) ≤ ((𝑁‘𝐴) + (𝑁‘((invg‘𝐺)‘𝐵)))) |
11 | 7, 10 | syld3an3 1371 | . 2 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴(-g‘𝐺)((invg‘𝐺)‘𝐵))) ≤ ((𝑁‘𝐴) + (𝑁‘((invg‘𝐺)‘𝐵)))) |
12 | nmtri.p | . . . 4 ⊢ + = (+g‘𝐺) | |
13 | simp2 1062 | . . . 4 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
14 | 4, 12, 9, 5, 2, 13, 3 | grpsubinv 17488 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴(-g‘𝐺)((invg‘𝐺)‘𝐵)) = (𝐴 + 𝐵)) |
15 | 14 | fveq2d 6195 | . 2 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴(-g‘𝐺)((invg‘𝐺)‘𝐵))) = (𝑁‘(𝐴 + 𝐵))) |
16 | 4, 8, 5 | nminv 22425 | . . . 4 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐵 ∈ 𝑋) → (𝑁‘((invg‘𝐺)‘𝐵)) = (𝑁‘𝐵)) |
17 | 16 | 3adant2 1080 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘((invg‘𝐺)‘𝐵)) = (𝑁‘𝐵)) |
18 | 17 | oveq2d 6666 | . 2 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘𝐴) + (𝑁‘((invg‘𝐺)‘𝐵))) = ((𝑁‘𝐴) + (𝑁‘𝐵))) |
19 | 11, 15, 18 | 3brtr3d 4684 | 1 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴 + 𝐵)) ≤ ((𝑁‘𝐴) + (𝑁‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 + caddc 9939 ≤ cle 10075 Basecbs 15857 +gcplusg 15941 Grpcgrp 17422 invgcminusg 17423 -gcsg 17424 normcnm 22381 NrmGrpcngp 22382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-n0 11293 df-z 11378 df-uz 11688 df-q 11789 df-rp 11833 df-xneg 11946 df-xadd 11947 df-xmul 11948 df-0g 16102 df-topgen 16104 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-minusg 17426 df-sbg 17427 df-psmet 19738 df-xmet 19739 df-met 19740 df-bl 19741 df-mopn 19742 df-top 20699 df-topon 20716 df-topsp 20737 df-bases 20750 df-xms 22125 df-ms 22126 df-nm 22387 df-ngp 22388 |
This theorem is referenced by: nmtri2 22431 tngngp3 22460 nmotri 22543 |
Copyright terms: Public domain | W3C validator |