HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  norm1exi Structured version   Visualization version   GIF version

Theorem norm1exi 28107
Description: A normalized vector exists in a subspace iff the subspace has a nonzero vector. (Contributed by NM, 9-Apr-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
norm1ex.1 𝐻S
Assertion
Ref Expression
norm1exi (∃𝑥𝐻 𝑥 ≠ 0 ↔ ∃𝑦𝐻 (norm𝑦) = 1)
Distinct variable groups:   𝑥,𝐻   𝑦,𝐻

Proof of Theorem norm1exi
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 neeq1 2856 . . 3 (𝑥 = 𝑧 → (𝑥 ≠ 0𝑧 ≠ 0))
21cbvrexv 3172 . 2 (∃𝑥𝐻 𝑥 ≠ 0 ↔ ∃𝑧𝐻 𝑧 ≠ 0)
3 norm1ex.1 . . . . . . . . . . 11 𝐻S
43sheli 28071 . . . . . . . . . 10 (𝑧𝐻𝑧 ∈ ℋ)
5 normcl 27982 . . . . . . . . . 10 (𝑧 ∈ ℋ → (norm𝑧) ∈ ℝ)
64, 5syl 17 . . . . . . . . 9 (𝑧𝐻 → (norm𝑧) ∈ ℝ)
76adantr 481 . . . . . . . 8 ((𝑧𝐻𝑧 ≠ 0) → (norm𝑧) ∈ ℝ)
8 normne0 27987 . . . . . . . . . 10 (𝑧 ∈ ℋ → ((norm𝑧) ≠ 0 ↔ 𝑧 ≠ 0))
94, 8syl 17 . . . . . . . . 9 (𝑧𝐻 → ((norm𝑧) ≠ 0 ↔ 𝑧 ≠ 0))
109biimpar 502 . . . . . . . 8 ((𝑧𝐻𝑧 ≠ 0) → (norm𝑧) ≠ 0)
117, 10rereccld 10852 . . . . . . 7 ((𝑧𝐻𝑧 ≠ 0) → (1 / (norm𝑧)) ∈ ℝ)
1211recnd 10068 . . . . . 6 ((𝑧𝐻𝑧 ≠ 0) → (1 / (norm𝑧)) ∈ ℂ)
13 simpl 473 . . . . . 6 ((𝑧𝐻𝑧 ≠ 0) → 𝑧𝐻)
14 shmulcl 28075 . . . . . . 7 ((𝐻S ∧ (1 / (norm𝑧)) ∈ ℂ ∧ 𝑧𝐻) → ((1 / (norm𝑧)) · 𝑧) ∈ 𝐻)
153, 14mp3an1 1411 . . . . . 6 (((1 / (norm𝑧)) ∈ ℂ ∧ 𝑧𝐻) → ((1 / (norm𝑧)) · 𝑧) ∈ 𝐻)
1612, 13, 15syl2anc 693 . . . . 5 ((𝑧𝐻𝑧 ≠ 0) → ((1 / (norm𝑧)) · 𝑧) ∈ 𝐻)
17 norm1 28106 . . . . . 6 ((𝑧 ∈ ℋ ∧ 𝑧 ≠ 0) → (norm‘((1 / (norm𝑧)) · 𝑧)) = 1)
184, 17sylan 488 . . . . 5 ((𝑧𝐻𝑧 ≠ 0) → (norm‘((1 / (norm𝑧)) · 𝑧)) = 1)
19 fveq2 6191 . . . . . . 7 (𝑦 = ((1 / (norm𝑧)) · 𝑧) → (norm𝑦) = (norm‘((1 / (norm𝑧)) · 𝑧)))
2019eqeq1d 2624 . . . . . 6 (𝑦 = ((1 / (norm𝑧)) · 𝑧) → ((norm𝑦) = 1 ↔ (norm‘((1 / (norm𝑧)) · 𝑧)) = 1))
2120rspcev 3309 . . . . 5 ((((1 / (norm𝑧)) · 𝑧) ∈ 𝐻 ∧ (norm‘((1 / (norm𝑧)) · 𝑧)) = 1) → ∃𝑦𝐻 (norm𝑦) = 1)
2216, 18, 21syl2anc 693 . . . 4 ((𝑧𝐻𝑧 ≠ 0) → ∃𝑦𝐻 (norm𝑦) = 1)
2322rexlimiva 3028 . . 3 (∃𝑧𝐻 𝑧 ≠ 0 → ∃𝑦𝐻 (norm𝑦) = 1)
24 ax-1ne0 10005 . . . . . . . 8 1 ≠ 0
2524neii 2796 . . . . . . 7 ¬ 1 = 0
26 eqeq1 2626 . . . . . . 7 ((norm𝑦) = 1 → ((norm𝑦) = 0 ↔ 1 = 0))
2725, 26mtbiri 317 . . . . . 6 ((norm𝑦) = 1 → ¬ (norm𝑦) = 0)
283sheli 28071 . . . . . . . 8 (𝑦𝐻𝑦 ∈ ℋ)
29 norm-i 27986 . . . . . . . 8 (𝑦 ∈ ℋ → ((norm𝑦) = 0 ↔ 𝑦 = 0))
3028, 29syl 17 . . . . . . 7 (𝑦𝐻 → ((norm𝑦) = 0 ↔ 𝑦 = 0))
3130necon3bbid 2831 . . . . . 6 (𝑦𝐻 → (¬ (norm𝑦) = 0 ↔ 𝑦 ≠ 0))
3227, 31syl5ib 234 . . . . 5 (𝑦𝐻 → ((norm𝑦) = 1 → 𝑦 ≠ 0))
3332reximia 3009 . . . 4 (∃𝑦𝐻 (norm𝑦) = 1 → ∃𝑦𝐻 𝑦 ≠ 0)
34 neeq1 2856 . . . . 5 (𝑦 = 𝑧 → (𝑦 ≠ 0𝑧 ≠ 0))
3534cbvrexv 3172 . . . 4 (∃𝑦𝐻 𝑦 ≠ 0 ↔ ∃𝑧𝐻 𝑧 ≠ 0)
3633, 35sylib 208 . . 3 (∃𝑦𝐻 (norm𝑦) = 1 → ∃𝑧𝐻 𝑧 ≠ 0)
3723, 36impbii 199 . 2 (∃𝑧𝐻 𝑧 ≠ 0 ↔ ∃𝑦𝐻 (norm𝑦) = 1)
382, 37bitri 264 1 (∃𝑥𝐻 𝑥 ≠ 0 ↔ ∃𝑦𝐻 (norm𝑦) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wrex 2913  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   / cdiv 10684  chil 27776   · csm 27778  normcno 27780  0c0v 27781   S csh 27785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-hilex 27856  ax-hfvadd 27857  ax-hv0cl 27860  ax-hfvmul 27862  ax-hvmul0 27867  ax-hfi 27936  ax-his1 27939  ax-his3 27941  ax-his4 27942
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-hnorm 27825  df-sh 28064
This theorem is referenced by:  norm1hex  28108  pjnmopi  29007
  Copyright terms: Public domain W3C validator