Proof of Theorem normpar
| Step | Hyp | Ref
| Expression |
| 1 | | oveq1 6657 |
. . . . . 6
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (𝐴 −ℎ
𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵)) |
| 2 | 1 | fveq2d 6195 |
. . . . 5
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) →
(normℎ‘(𝐴 −ℎ 𝐵)) =
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵))) |
| 3 | 2 | oveq1d 6665 |
. . . 4
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) →
((normℎ‘(𝐴 −ℎ 𝐵))↑2) =
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵))↑2)) |
| 4 | | oveq1 6657 |
. . . . . 6
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (𝐴 +ℎ 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ
𝐵)) |
| 5 | 4 | fveq2d 6195 |
. . . . 5
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) →
(normℎ‘(𝐴 +ℎ 𝐵)) =
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ
𝐵))) |
| 6 | 5 | oveq1d 6665 |
. . . 4
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) →
((normℎ‘(𝐴 +ℎ 𝐵))↑2) =
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ
𝐵))↑2)) |
| 7 | 3, 6 | oveq12d 6668 |
. . 3
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) →
(((normℎ‘(𝐴 −ℎ 𝐵))↑2) +
((normℎ‘(𝐴 +ℎ 𝐵))↑2)) =
(((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵))↑2) +
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ
𝐵))↑2))) |
| 8 | | fveq2 6191 |
. . . . . 6
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) →
(normℎ‘𝐴) = (normℎ‘if(𝐴 ∈ ℋ, 𝐴,
0ℎ))) |
| 9 | 8 | oveq1d 6665 |
. . . . 5
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) →
((normℎ‘𝐴)↑2) =
((normℎ‘if(𝐴 ∈ ℋ, 𝐴,
0ℎ))↑2)) |
| 10 | 9 | oveq2d 6666 |
. . . 4
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → (2 ·
((normℎ‘𝐴)↑2)) = (2 ·
((normℎ‘if(𝐴 ∈ ℋ, 𝐴,
0ℎ))↑2))) |
| 11 | 10 | oveq1d 6665 |
. . 3
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) → ((2 ·
((normℎ‘𝐴)↑2)) + (2 ·
((normℎ‘𝐵)↑2))) = ((2 ·
((normℎ‘if(𝐴 ∈ ℋ, 𝐴, 0ℎ))↑2)) + (2
· ((normℎ‘𝐵)↑2)))) |
| 12 | 7, 11 | eqeq12d 2637 |
. 2
⊢ (𝐴 = if(𝐴 ∈ ℋ, 𝐴, 0ℎ) →
((((normℎ‘(𝐴 −ℎ 𝐵))↑2) +
((normℎ‘(𝐴 +ℎ 𝐵))↑2)) = ((2 ·
((normℎ‘𝐴)↑2)) + (2 ·
((normℎ‘𝐵)↑2))) ↔
(((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵))↑2) +
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ
𝐵))↑2)) = ((2 ·
((normℎ‘if(𝐴 ∈ ℋ, 𝐴, 0ℎ))↑2)) + (2
· ((normℎ‘𝐵)↑2))))) |
| 13 | | oveq2 6658 |
. . . . . 6
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵) = (if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ))) |
| 14 | 13 | fveq2d 6195 |
. . . . 5
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) →
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵)) =
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))) |
| 15 | 14 | oveq1d 6665 |
. . . 4
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) →
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵))↑2) =
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵,
0ℎ)))↑2)) |
| 16 | | oveq2 6658 |
. . . . . 6
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
+ℎ 𝐵) =
(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
+ℎ if(𝐵
∈ ℋ, 𝐵,
0ℎ))) |
| 17 | 16 | fveq2d 6195 |
. . . . 5
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) →
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ
𝐵)) =
(normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ
if(𝐵 ∈ ℋ, 𝐵,
0ℎ)))) |
| 18 | 17 | oveq1d 6665 |
. . . 4
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) →
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ
𝐵))↑2) =
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ
if(𝐵 ∈ ℋ, 𝐵,
0ℎ)))↑2)) |
| 19 | 15, 18 | oveq12d 6668 |
. . 3
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) →
(((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵))↑2) +
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ
𝐵))↑2)) =
(((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))↑2) +
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ
if(𝐵 ∈ ℋ, 𝐵,
0ℎ)))↑2))) |
| 20 | | fveq2 6191 |
. . . . . 6
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) →
(normℎ‘𝐵) = (normℎ‘if(𝐵 ∈ ℋ, 𝐵,
0ℎ))) |
| 21 | 20 | oveq1d 6665 |
. . . . 5
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) →
((normℎ‘𝐵)↑2) =
((normℎ‘if(𝐵 ∈ ℋ, 𝐵,
0ℎ))↑2)) |
| 22 | 21 | oveq2d 6666 |
. . . 4
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → (2 ·
((normℎ‘𝐵)↑2)) = (2 ·
((normℎ‘if(𝐵 ∈ ℋ, 𝐵,
0ℎ))↑2))) |
| 23 | 22 | oveq2d 6666 |
. . 3
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) → ((2 ·
((normℎ‘if(𝐴 ∈ ℋ, 𝐴, 0ℎ))↑2)) + (2
· ((normℎ‘𝐵)↑2))) = ((2 ·
((normℎ‘if(𝐴 ∈ ℋ, 𝐴, 0ℎ))↑2)) + (2
· ((normℎ‘if(𝐵 ∈ ℋ, 𝐵,
0ℎ))↑2)))) |
| 24 | 19, 23 | eqeq12d 2637 |
. 2
⊢ (𝐵 = if(𝐵 ∈ ℋ, 𝐵, 0ℎ) →
((((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ 𝐵))↑2) +
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ
𝐵))↑2)) = ((2 ·
((normℎ‘if(𝐴 ∈ ℋ, 𝐴, 0ℎ))↑2)) + (2
· ((normℎ‘𝐵)↑2))) ↔
(((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))↑2) +
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ
if(𝐵 ∈ ℋ, 𝐵,
0ℎ)))↑2)) = ((2 ·
((normℎ‘if(𝐴 ∈ ℋ, 𝐴, 0ℎ))↑2)) + (2
· ((normℎ‘if(𝐵 ∈ ℋ, 𝐵,
0ℎ))↑2))))) |
| 25 | | ifhvhv0 27879 |
. . 3
⊢ if(𝐴 ∈ ℋ, 𝐴, 0ℎ) ∈
ℋ |
| 26 | | ifhvhv0 27879 |
. . 3
⊢ if(𝐵 ∈ ℋ, 𝐵, 0ℎ) ∈
ℋ |
| 27 | 25, 26 | normpari 28011 |
. 2
⊢
(((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ)
−ℎ if(𝐵 ∈ ℋ, 𝐵, 0ℎ)))↑2) +
((normℎ‘(if(𝐴 ∈ ℋ, 𝐴, 0ℎ) +ℎ
if(𝐵 ∈ ℋ, 𝐵,
0ℎ)))↑2)) = ((2 ·
((normℎ‘if(𝐴 ∈ ℋ, 𝐴, 0ℎ))↑2)) + (2
· ((normℎ‘if(𝐵 ∈ ℋ, 𝐵,
0ℎ))↑2))) |
| 28 | 12, 24, 27 | dedth2h 4140 |
1
⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) →
(((normℎ‘(𝐴 −ℎ 𝐵))↑2) +
((normℎ‘(𝐴 +ℎ 𝐵))↑2)) = ((2 ·
((normℎ‘𝐴)↑2)) + (2 ·
((normℎ‘𝐵)↑2)))) |