Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnrebl2 Structured version   Visualization version   GIF version

Theorem opnrebl2 32316
Description: A set is open in the standard topology of the reals precisely when every point can be enclosed in an arbitrarily small ball. (Contributed by Jeff Hankins, 22-Sep-2013.) (Proof shortened by Mario Carneiro, 30-Jan-2014.)
Assertion
Ref Expression
opnrebl2 (𝐴 ∈ (topGen‘ran (,)) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem opnrebl2
StepHypRef Expression
1 eqid 2622 . . . . 5 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
21rexmet 22594 . . . 4 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
3 eqid 2622 . . . . . 6 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
41, 3tgioo 22599 . . . . 5 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
54mopnss 22251 . . . 4 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ 𝐴 ∈ (topGen‘ran (,))) → 𝐴 ⊆ ℝ)
62, 5mpan 706 . . 3 (𝐴 ∈ (topGen‘ran (,)) → 𝐴 ⊆ ℝ)
74mopni3 22299 . . . . . . . 8 (((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ 𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) ∧ 𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴))
87ex 450 . . . . . . 7 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ 𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) → (𝑦 ∈ ℝ+ → ∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴)))
92, 8mp3an1 1411 . . . . . 6 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) → (𝑦 ∈ ℝ+ → ∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴)))
106sselda 3603 . . . . . . 7 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
11 rpre 11839 . . . . . . . . . . . . 13 (𝑧 ∈ ℝ+𝑧 ∈ ℝ)
121bl2ioo 22595 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) = ((𝑥𝑧)(,)(𝑥 + 𝑧)))
1311, 12sylan2 491 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ+) → (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) = ((𝑥𝑧)(,)(𝑥 + 𝑧)))
1413sseq1d 3632 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ+) → ((𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴 ↔ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴))
1514anbi2d 740 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ+) → ((𝑧 < 𝑦 ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴) ↔ (𝑧 < 𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
1615rexbidva 3049 . . . . . . . . 9 (𝑥 ∈ ℝ → (∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴) ↔ ∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
1716biimpd 219 . . . . . . . 8 (𝑥 ∈ ℝ → (∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴) → ∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
18 rpre 11839 . . . . . . . . . . 11 (𝑦 ∈ ℝ+𝑦 ∈ ℝ)
19 ltle 10126 . . . . . . . . . . 11 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧 < 𝑦𝑧𝑦))
2011, 18, 19syl2anr 495 . . . . . . . . . 10 ((𝑦 ∈ ℝ+𝑧 ∈ ℝ+) → (𝑧 < 𝑦𝑧𝑦))
2120anim1d 588 . . . . . . . . 9 ((𝑦 ∈ ℝ+𝑧 ∈ ℝ+) → ((𝑧 < 𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
2221reximdva 3017 . . . . . . . 8 (𝑦 ∈ ℝ+ → (∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → ∃𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
2317, 22syl9 77 . . . . . . 7 (𝑥 ∈ ℝ → (𝑦 ∈ ℝ+ → (∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴) → ∃𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴))))
2410, 23syl 17 . . . . . 6 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) → (𝑦 ∈ ℝ+ → (∃𝑧 ∈ ℝ+ (𝑧 < 𝑦 ∧ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴) → ∃𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴))))
259, 24mpdd 43 . . . . 5 ((𝐴 ∈ (topGen‘ran (,)) ∧ 𝑥𝐴) → (𝑦 ∈ ℝ+ → ∃𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
2625expimpd 629 . . . 4 (𝐴 ∈ (topGen‘ran (,)) → ((𝑥𝐴𝑦 ∈ ℝ+) → ∃𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
2726ralrimivv 2970 . . 3 (𝐴 ∈ (topGen‘ran (,)) → ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴))
286, 27jca 554 . 2 (𝐴 ∈ (topGen‘ran (,)) → (𝐴 ⊆ ℝ ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
29 ssel2 3598 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
30 1rp 11836 . . . . . . . 8 1 ∈ ℝ+
31 simpr 477 . . . . . . . . . 10 ((𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)
3231reximi 3011 . . . . . . . . 9 (∃𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → ∃𝑧 ∈ ℝ+ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)
3332ralimi 2952 . . . . . . . 8 (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)
34 biidd 252 . . . . . . . . 9 (𝑦 = 1 → (∃𝑧 ∈ ℝ+ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴 ↔ ∃𝑧 ∈ ℝ+ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴))
3534rspcv 3305 . . . . . . . 8 (1 ∈ ℝ+ → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴 → ∃𝑧 ∈ ℝ+ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴))
3630, 33, 35mpsyl 68 . . . . . . 7 (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → ∃𝑧 ∈ ℝ+ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)
3714rexbidva 3049 . . . . . . 7 (𝑥 ∈ ℝ → (∃𝑧 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴 ↔ ∃𝑧 ∈ ℝ+ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴))
3836, 37syl5ibr 236 . . . . . 6 (𝑥 ∈ ℝ → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → ∃𝑧 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴))
3929, 38syl 17 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → ∃𝑧 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴))
4039ralimdva 2962 . . . 4 (𝐴 ⊆ ℝ → (∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴) → ∀𝑥𝐴𝑧 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴))
4140imdistani 726 . . 3 ((𝐴 ⊆ ℝ ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)) → (𝐴 ⊆ ℝ ∧ ∀𝑥𝐴𝑧 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴))
424elmopn2 22250 . . . 4 (((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) → (𝐴 ∈ (topGen‘ran (,)) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥𝐴𝑧 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴)))
432, 42ax-mp 5 . . 3 (𝐴 ∈ (topGen‘ran (,)) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥𝐴𝑧 ∈ ℝ+ (𝑥(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑧) ⊆ 𝐴))
4441, 43sylibr 224 . 2 ((𝐴 ⊆ ℝ ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)) → 𝐴 ∈ (topGen‘ran (,)))
4528, 44impbii 199 1 (𝐴 ∈ (topGen‘ran (,)) ↔ (𝐴 ⊆ ℝ ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝑧𝑦 ∧ ((𝑥𝑧)(,)(𝑥 + 𝑧)) ⊆ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  wss 3574   class class class wbr 4653   × cxp 5112  ran crn 5115  cres 5116  ccom 5118  cfv 5888  (class class class)co 6650  cr 9935  1c1 9937   + caddc 9939   < clt 10074  cle 10075  cmin 10266  +crp 11832  (,)cioo 12175  abscabs 13974  topGenctg 16098  ∞Metcxmt 19731  ballcbl 19733  MetOpencmopn 19736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator