Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnrebl2 Structured version   Visualization version   Unicode version

Theorem opnrebl2 32316
Description: A set is open in the standard topology of the reals precisely when every point can be enclosed in an arbitrarily small ball. (Contributed by Jeff Hankins, 22-Sep-2013.) (Proof shortened by Mario Carneiro, 30-Jan-2014.)
Assertion
Ref Expression
opnrebl2  |-  ( A  e.  ( topGen `  ran  (,) )  <->  ( A  C_  RR  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  ( z  <_  y  /\  ( ( x  -  z ) (,) (
x  +  z ) )  C_  A )
) )
Distinct variable group:    x, y, z, A

Proof of Theorem opnrebl2
StepHypRef Expression
1 eqid 2622 . . . . 5  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )
21rexmet 22594 . . . 4  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  e.  ( *Met `  RR )
3 eqid 2622 . . . . . 6  |-  ( MetOpen `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) )  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) )
41, 3tgioo 22599 . . . . 5  |-  ( topGen ` 
ran  (,) )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) )
54mopnss 22251 . . . 4  |-  ( ( ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )  e.  ( *Met `  RR )  /\  A  e.  ( topGen `  ran  (,) )
)  ->  A  C_  RR )
62, 5mpan 706 . . 3  |-  ( A  e.  ( topGen `  ran  (,) )  ->  A  C_  RR )
74mopni3 22299 . . . . . . . 8  |-  ( ( ( ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) )  e.  ( *Met `  RR )  /\  A  e.  ( topGen `  ran  (,) )  /\  x  e.  A
)  /\  y  e.  RR+ )  ->  E. z  e.  RR+  ( z  < 
y  /\  ( x
( ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) z )  C_  A )
)
87ex 450 . . . . . . 7  |-  ( ( ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )  e.  ( *Met `  RR )  /\  A  e.  ( topGen `  ran  (,) )  /\  x  e.  A
)  ->  ( y  e.  RR+  ->  E. z  e.  RR+  ( z  < 
y  /\  ( x
( ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) z )  C_  A )
) )
92, 8mp3an1 1411 . . . . . 6  |-  ( ( A  e.  ( topGen ` 
ran  (,) )  /\  x  e.  A )  ->  (
y  e.  RR+  ->  E. z  e.  RR+  (
z  <  y  /\  ( x ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) z )  C_  A ) ) )
106sselda 3603 . . . . . . 7  |-  ( ( A  e.  ( topGen ` 
ran  (,) )  /\  x  e.  A )  ->  x  e.  RR )
11 rpre 11839 . . . . . . . . . . . . 13  |-  ( z  e.  RR+  ->  z  e.  RR )
121bl2ioo 22595 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  z  e.  RR )  ->  ( x ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) z )  =  ( ( x  -  z ) (,) (
x  +  z ) ) )
1311, 12sylan2 491 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  z  e.  RR+ )  -> 
( x ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) z )  =  ( ( x  -  z ) (,) (
x  +  z ) ) )
1413sseq1d 3632 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  z  e.  RR+ )  -> 
( ( x (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) z )  C_  A  <->  ( (
x  -  z ) (,) ( x  +  z ) )  C_  A ) )
1514anbi2d 740 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  z  e.  RR+ )  -> 
( ( z  < 
y  /\  ( x
( ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) z )  C_  A )  <->  ( z  <  y  /\  ( ( x  -  z ) (,) (
x  +  z ) )  C_  A )
) )
1615rexbidva 3049 . . . . . . . . 9  |-  ( x  e.  RR  ->  ( E. z  e.  RR+  (
z  <  y  /\  ( x ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) z )  C_  A )  <->  E. z  e.  RR+  ( z  < 
y  /\  ( (
x  -  z ) (,) ( x  +  z ) )  C_  A ) ) )
1716biimpd 219 . . . . . . . 8  |-  ( x  e.  RR  ->  ( E. z  e.  RR+  (
z  <  y  /\  ( x ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) z )  C_  A )  ->  E. z  e.  RR+  ( z  < 
y  /\  ( (
x  -  z ) (,) ( x  +  z ) )  C_  A ) ) )
18 rpre 11839 . . . . . . . . . . 11  |-  ( y  e.  RR+  ->  y  e.  RR )
19 ltle 10126 . . . . . . . . . . 11  |-  ( ( z  e.  RR  /\  y  e.  RR )  ->  ( z  <  y  ->  z  <_  y )
)
2011, 18, 19syl2anr 495 . . . . . . . . . 10  |-  ( ( y  e.  RR+  /\  z  e.  RR+ )  ->  (
z  <  y  ->  z  <_  y ) )
2120anim1d 588 . . . . . . . . 9  |-  ( ( y  e.  RR+  /\  z  e.  RR+ )  ->  (
( z  <  y  /\  ( ( x  -  z ) (,) (
x  +  z ) )  C_  A )  ->  ( z  <_  y  /\  ( ( x  -  z ) (,) (
x  +  z ) )  C_  A )
) )
2221reximdva 3017 . . . . . . . 8  |-  ( y  e.  RR+  ->  ( E. z  e.  RR+  (
z  <  y  /\  ( ( x  -  z ) (,) (
x  +  z ) )  C_  A )  ->  E. z  e.  RR+  ( z  <_  y  /\  ( ( x  -  z ) (,) (
x  +  z ) )  C_  A )
) )
2317, 22syl9 77 . . . . . . 7  |-  ( x  e.  RR  ->  (
y  e.  RR+  ->  ( E. z  e.  RR+  ( z  <  y  /\  ( x ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) z )  C_  A )  ->  E. z  e.  RR+  ( z  <_ 
y  /\  ( (
x  -  z ) (,) ( x  +  z ) )  C_  A ) ) ) )
2410, 23syl 17 . . . . . 6  |-  ( ( A  e.  ( topGen ` 
ran  (,) )  /\  x  e.  A )  ->  (
y  e.  RR+  ->  ( E. z  e.  RR+  ( z  <  y  /\  ( x ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) z )  C_  A )  ->  E. z  e.  RR+  ( z  <_ 
y  /\  ( (
x  -  z ) (,) ( x  +  z ) )  C_  A ) ) ) )
259, 24mpdd 43 . . . . 5  |-  ( ( A  e.  ( topGen ` 
ran  (,) )  /\  x  e.  A )  ->  (
y  e.  RR+  ->  E. z  e.  RR+  (
z  <_  y  /\  ( ( x  -  z ) (,) (
x  +  z ) )  C_  A )
) )
2625expimpd 629 . . . 4  |-  ( A  e.  ( topGen `  ran  (,) )  ->  ( (
x  e.  A  /\  y  e.  RR+ )  ->  E. z  e.  RR+  (
z  <_  y  /\  ( ( x  -  z ) (,) (
x  +  z ) )  C_  A )
) )
2726ralrimivv 2970 . . 3  |-  ( A  e.  ( topGen `  ran  (,) )  ->  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  ( z  <_  y  /\  ( ( x  -  z ) (,) (
x  +  z ) )  C_  A )
)
286, 27jca 554 . 2  |-  ( A  e.  ( topGen `  ran  (,) )  ->  ( A  C_  RR  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  ( z  <_  y  /\  ( ( x  -  z ) (,) (
x  +  z ) )  C_  A )
) )
29 ssel2 3598 . . . . . 6  |-  ( ( A  C_  RR  /\  x  e.  A )  ->  x  e.  RR )
30 1rp 11836 . . . . . . . 8  |-  1  e.  RR+
31 simpr 477 . . . . . . . . . 10  |-  ( ( z  <_  y  /\  ( ( x  -  z ) (,) (
x  +  z ) )  C_  A )  ->  ( ( x  -  z ) (,) (
x  +  z ) )  C_  A )
3231reximi 3011 . . . . . . . . 9  |-  ( E. z  e.  RR+  (
z  <_  y  /\  ( ( x  -  z ) (,) (
x  +  z ) )  C_  A )  ->  E. z  e.  RR+  ( ( x  -  z ) (,) (
x  +  z ) )  C_  A )
3332ralimi 2952 . . . . . . . 8  |-  ( A. y  e.  RR+  E. z  e.  RR+  ( z  <_ 
y  /\  ( (
x  -  z ) (,) ( x  +  z ) )  C_  A )  ->  A. y  e.  RR+  E. z  e.  RR+  ( ( x  -  z ) (,) (
x  +  z ) )  C_  A )
34 biidd 252 . . . . . . . . 9  |-  ( y  =  1  ->  ( E. z  e.  RR+  (
( x  -  z
) (,) ( x  +  z ) ) 
C_  A  <->  E. z  e.  RR+  ( ( x  -  z ) (,) ( x  +  z ) )  C_  A
) )
3534rspcv 3305 . . . . . . . 8  |-  ( 1  e.  RR+  ->  ( A. y  e.  RR+  E. z  e.  RR+  ( ( x  -  z ) (,) ( x  +  z ) )  C_  A  ->  E. z  e.  RR+  ( ( x  -  z ) (,) (
x  +  z ) )  C_  A )
)
3630, 33, 35mpsyl 68 . . . . . . 7  |-  ( A. y  e.  RR+  E. z  e.  RR+  ( z  <_ 
y  /\  ( (
x  -  z ) (,) ( x  +  z ) )  C_  A )  ->  E. z  e.  RR+  ( ( x  -  z ) (,) ( x  +  z ) )  C_  A
)
3714rexbidva 3049 . . . . . . 7  |-  ( x  e.  RR  ->  ( E. z  e.  RR+  (
x ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) z )  C_  A  <->  E. z  e.  RR+  ( ( x  -  z ) (,) ( x  +  z ) )  C_  A
) )
3836, 37syl5ibr 236 . . . . . 6  |-  ( x  e.  RR  ->  ( A. y  e.  RR+  E. z  e.  RR+  ( z  <_ 
y  /\  ( (
x  -  z ) (,) ( x  +  z ) )  C_  A )  ->  E. z  e.  RR+  ( x (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) z )  C_  A )
)
3929, 38syl 17 . . . . 5  |-  ( ( A  C_  RR  /\  x  e.  A )  ->  ( A. y  e.  RR+  E. z  e.  RR+  ( z  <_ 
y  /\  ( (
x  -  z ) (,) ( x  +  z ) )  C_  A )  ->  E. z  e.  RR+  ( x (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) z )  C_  A )
)
4039ralimdva 2962 . . . 4  |-  ( A 
C_  RR  ->  ( A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  ( z  <_ 
y  /\  ( (
x  -  z ) (,) ( x  +  z ) )  C_  A )  ->  A. x  e.  A  E. z  e.  RR+  ( x (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) z )  C_  A )
)
4140imdistani 726 . . 3  |-  ( ( A  C_  RR  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  ( z  <_ 
y  /\  ( (
x  -  z ) (,) ( x  +  z ) )  C_  A ) )  -> 
( A  C_  RR  /\ 
A. x  e.  A  E. z  e.  RR+  (
x ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) z )  C_  A )
)
424elmopn2 22250 . . . 4  |-  ( ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  e.  ( *Met `  RR )  ->  ( A  e.  ( topGen `  ran  (,) )  <->  ( A  C_  RR  /\  A. x  e.  A  E. z  e.  RR+  ( x ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) z )  C_  A )
) )
432, 42ax-mp 5 . . 3  |-  ( A  e.  ( topGen `  ran  (,) )  <->  ( A  C_  RR  /\  A. x  e.  A  E. z  e.  RR+  ( x ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) z )  C_  A ) )
4441, 43sylibr 224 . 2  |-  ( ( A  C_  RR  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  ( z  <_ 
y  /\  ( (
x  -  z ) (,) ( x  +  z ) )  C_  A ) )  ->  A  e.  ( topGen ` 
ran  (,) ) )
4528, 44impbii 199 1  |-  ( A  e.  ( topGen `  ran  (,) )  <->  ( A  C_  RR  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  ( z  <_  y  /\  ( ( x  -  z ) (,) (
x  +  z ) )  C_  A )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    C_ wss 3574   class class class wbr 4653    X. cxp 5112   ran crn 5115    |` cres 5116    o. ccom 5118   ` cfv 5888  (class class class)co 6650   RRcr 9935   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266   RR+crp 11832   (,)cioo 12175   abscabs 13974   topGenctg 16098   *Metcxmt 19731   ballcbl 19733   MetOpencmopn 19736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator