Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opoeALTV Structured version   Visualization version   GIF version

Theorem opoeALTV 41594
Description: The sum of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by AV, 20-Jun-2020.)
Assertion
Ref Expression
opoeALTV ((𝐴 ∈ Odd ∧ 𝐵 ∈ Odd ) → (𝐴 + 𝐵) ∈ Even )

Proof of Theorem opoeALTV
Dummy variables 𝑎 𝑖 𝑗 𝑛 𝑧 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oddz 41544 . . 3 (𝐴 ∈ Odd → 𝐴 ∈ ℤ)
2 oddz 41544 . . 3 (𝐵 ∈ Odd → 𝐵 ∈ ℤ)
3 zaddcl 11417 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 + 𝐵) ∈ ℤ)
41, 2, 3syl2an 494 . 2 ((𝐴 ∈ Odd ∧ 𝐵 ∈ Odd ) → (𝐴 + 𝐵) ∈ ℤ)
5 eqeq1 2626 . . . . . 6 (𝑎 = 𝐴 → (𝑎 = ((2 · 𝑖) + 1) ↔ 𝐴 = ((2 · 𝑖) + 1)))
65rexbidv 3052 . . . . 5 (𝑎 = 𝐴 → (∃𝑖 ∈ ℤ 𝑎 = ((2 · 𝑖) + 1) ↔ ∃𝑖 ∈ ℤ 𝐴 = ((2 · 𝑖) + 1)))
7 dfodd6 41550 . . . . 5 Odd = {𝑎 ∈ ℤ ∣ ∃𝑖 ∈ ℤ 𝑎 = ((2 · 𝑖) + 1)}
86, 7elrab2 3366 . . . 4 (𝐴 ∈ Odd ↔ (𝐴 ∈ ℤ ∧ ∃𝑖 ∈ ℤ 𝐴 = ((2 · 𝑖) + 1)))
9 eqeq1 2626 . . . . . . 7 (𝑏 = 𝐵 → (𝑏 = ((2 · 𝑗) + 1) ↔ 𝐵 = ((2 · 𝑗) + 1)))
109rexbidv 3052 . . . . . 6 (𝑏 = 𝐵 → (∃𝑗 ∈ ℤ 𝑏 = ((2 · 𝑗) + 1) ↔ ∃𝑗 ∈ ℤ 𝐵 = ((2 · 𝑗) + 1)))
11 dfodd6 41550 . . . . . 6 Odd = {𝑏 ∈ ℤ ∣ ∃𝑗 ∈ ℤ 𝑏 = ((2 · 𝑗) + 1)}
1210, 11elrab2 3366 . . . . 5 (𝐵 ∈ Odd ↔ (𝐵 ∈ ℤ ∧ ∃𝑗 ∈ ℤ 𝐵 = ((2 · 𝑗) + 1)))
13 zaddcl 11417 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑖 + 𝑗) ∈ ℤ)
1413ex 450 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ℤ → (𝑗 ∈ ℤ → (𝑖 + 𝑗) ∈ ℤ))
1514ad3antlr 767 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) → (𝑗 ∈ ℤ → (𝑖 + 𝑗) ∈ ℤ))
1615imp 445 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) → (𝑖 + 𝑗) ∈ ℤ)
1716adantr 481 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = ((2 · 𝑗) + 1)) → (𝑖 + 𝑗) ∈ ℤ)
1817peano2zd 11485 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = ((2 · 𝑗) + 1)) → ((𝑖 + 𝑗) + 1) ∈ ℤ)
19 oveq2 6658 . . . . . . . . . . . . . 14 (𝑛 = ((𝑖 + 𝑗) + 1) → (2 · 𝑛) = (2 · ((𝑖 + 𝑗) + 1)))
2019eqeq2d 2632 . . . . . . . . . . . . 13 (𝑛 = ((𝑖 + 𝑗) + 1) → ((𝐴 + 𝐵) = (2 · 𝑛) ↔ (𝐴 + 𝐵) = (2 · ((𝑖 + 𝑗) + 1))))
2120adantl 482 . . . . . . . . . . . 12 (((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = ((2 · 𝑗) + 1)) ∧ 𝑛 = ((𝑖 + 𝑗) + 1)) → ((𝐴 + 𝐵) = (2 · 𝑛) ↔ (𝐴 + 𝐵) = (2 · ((𝑖 + 𝑗) + 1))))
22 oveq12 6659 . . . . . . . . . . . . . . . 16 ((𝐴 = ((2 · 𝑖) + 1) ∧ 𝐵 = ((2 · 𝑗) + 1)) → (𝐴 + 𝐵) = (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1)))
2322ex 450 . . . . . . . . . . . . . . 15 (𝐴 = ((2 · 𝑖) + 1) → (𝐵 = ((2 · 𝑗) + 1) → (𝐴 + 𝐵) = (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1))))
2423ad3antlr 767 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) → (𝐵 = ((2 · 𝑗) + 1) → (𝐴 + 𝐵) = (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1))))
2524imp 445 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = ((2 · 𝑗) + 1)) → (𝐴 + 𝐵) = (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1)))
26 zcn 11382 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ℤ → 𝑖 ∈ ℂ)
27 zcn 11382 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℤ → 𝑗 ∈ ℂ)
28 2cnd 11093 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ ℂ → 2 ∈ ℂ)
2928anim1i 592 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑗 ∈ ℂ ∧ 𝑖 ∈ ℂ) → (2 ∈ ℂ ∧ 𝑖 ∈ ℂ))
3029ancoms 469 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (2 ∈ ℂ ∧ 𝑖 ∈ ℂ))
31 mulcl 10020 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℂ ∧ 𝑖 ∈ ℂ) → (2 · 𝑖) ∈ ℂ)
3230, 31syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (2 · 𝑖) ∈ ℂ)
33 1cnd 10056 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → 1 ∈ ℂ)
34 2cnd 11093 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ ℂ → 2 ∈ ℂ)
35 mulcl 10020 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (2 · 𝑗) ∈ ℂ)
3634, 35sylan 488 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (2 · 𝑗) ∈ ℂ)
3732, 33, 36, 33add4d 10264 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1)) = (((2 · 𝑖) + (2 · 𝑗)) + (1 + 1)))
38 2cnd 11093 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → 2 ∈ ℂ)
39 simpl 473 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → 𝑖 ∈ ℂ)
40 simpr 477 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → 𝑗 ∈ ℂ)
4138, 39, 40adddid 10064 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (2 · (𝑖 + 𝑗)) = ((2 · 𝑖) + (2 · 𝑗)))
4241oveq1d 6665 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → ((2 · (𝑖 + 𝑗)) + (2 · 1)) = (((2 · 𝑖) + (2 · 𝑗)) + (2 · 1)))
43 addcl 10018 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (𝑖 + 𝑗) ∈ ℂ)
4438, 43, 33adddid 10064 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (2 · ((𝑖 + 𝑗) + 1)) = ((2 · (𝑖 + 𝑗)) + (2 · 1)))
45 1p1e2 11134 . . . . . . . . . . . . . . . . . . . . . . 23 (1 + 1) = 2
46 2t1e2 11176 . . . . . . . . . . . . . . . . . . . . . . 23 (2 · 1) = 2
4745, 46eqtr4i 2647 . . . . . . . . . . . . . . . . . . . . . 22 (1 + 1) = (2 · 1)
4847a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (1 + 1) = (2 · 1))
4948oveq2d 6666 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (((2 · 𝑖) + (2 · 𝑗)) + (1 + 1)) = (((2 · 𝑖) + (2 · 𝑗)) + (2 · 1)))
5042, 44, 493eqtr4rd 2667 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (((2 · 𝑖) + (2 · 𝑗)) + (1 + 1)) = (2 · ((𝑖 + 𝑗) + 1)))
5137, 50eqtrd 2656 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ ℂ ∧ 𝑗 ∈ ℂ) → (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1)) = (2 · ((𝑖 + 𝑗) + 1)))
5226, 27, 51syl2an 494 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1)) = (2 · ((𝑖 + 𝑗) + 1)))
5352ex 450 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ℤ → (𝑗 ∈ ℤ → (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1)) = (2 · ((𝑖 + 𝑗) + 1))))
5453ad3antlr 767 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) → (𝑗 ∈ ℤ → (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1)) = (2 · ((𝑖 + 𝑗) + 1))))
5554imp 445 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) → (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1)) = (2 · ((𝑖 + 𝑗) + 1)))
5655adantr 481 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = ((2 · 𝑗) + 1)) → (((2 · 𝑖) + 1) + ((2 · 𝑗) + 1)) = (2 · ((𝑖 + 𝑗) + 1)))
5725, 56eqtrd 2656 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = ((2 · 𝑗) + 1)) → (𝐴 + 𝐵) = (2 · ((𝑖 + 𝑗) + 1)))
5818, 21, 57rspcedvd 3317 . . . . . . . . . . 11 ((((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) ∧ 𝐵 = ((2 · 𝑗) + 1)) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛))
5958ex 450 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) ∧ 𝑗 ∈ ℤ) → (𝐵 = ((2 · 𝑗) + 1) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛)))
6059rexlimdva 3031 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) ∧ 𝐵 ∈ ℤ) → (∃𝑗 ∈ ℤ 𝐵 = ((2 · 𝑗) + 1) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛)))
6160expimpd 629 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((2 · 𝑖) + 1)) → ((𝐵 ∈ ℤ ∧ ∃𝑗 ∈ ℤ 𝐵 = ((2 · 𝑗) + 1)) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛)))
6261ex 450 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝐴 = ((2 · 𝑖) + 1) → ((𝐵 ∈ ℤ ∧ ∃𝑗 ∈ ℤ 𝐵 = ((2 · 𝑗) + 1)) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛))))
6362rexlimdva 3031 . . . . . 6 (𝐴 ∈ ℤ → (∃𝑖 ∈ ℤ 𝐴 = ((2 · 𝑖) + 1) → ((𝐵 ∈ ℤ ∧ ∃𝑗 ∈ ℤ 𝐵 = ((2 · 𝑗) + 1)) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛))))
6463imp 445 . . . . 5 ((𝐴 ∈ ℤ ∧ ∃𝑖 ∈ ℤ 𝐴 = ((2 · 𝑖) + 1)) → ((𝐵 ∈ ℤ ∧ ∃𝑗 ∈ ℤ 𝐵 = ((2 · 𝑗) + 1)) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛)))
6512, 64syl5bi 232 . . . 4 ((𝐴 ∈ ℤ ∧ ∃𝑖 ∈ ℤ 𝐴 = ((2 · 𝑖) + 1)) → (𝐵 ∈ Odd → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛)))
668, 65sylbi 207 . . 3 (𝐴 ∈ Odd → (𝐵 ∈ Odd → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛)))
6766imp 445 . 2 ((𝐴 ∈ Odd ∧ 𝐵 ∈ Odd ) → ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛))
68 eqeq1 2626 . . . 4 (𝑧 = (𝐴 + 𝐵) → (𝑧 = (2 · 𝑛) ↔ (𝐴 + 𝐵) = (2 · 𝑛)))
6968rexbidv 3052 . . 3 (𝑧 = (𝐴 + 𝐵) → (∃𝑛 ∈ ℤ 𝑧 = (2 · 𝑛) ↔ ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛)))
70 dfeven4 41551 . . 3 Even = {𝑧 ∈ ℤ ∣ ∃𝑛 ∈ ℤ 𝑧 = (2 · 𝑛)}
7169, 70elrab2 3366 . 2 ((𝐴 + 𝐵) ∈ Even ↔ ((𝐴 + 𝐵) ∈ ℤ ∧ ∃𝑛 ∈ ℤ (𝐴 + 𝐵) = (2 · 𝑛)))
724, 67, 71sylanbrc 698 1 ((𝐴 ∈ Odd ∧ 𝐵 ∈ Odd ) → (𝐴 + 𝐵) ∈ Even )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wrex 2913  (class class class)co 6650  cc 9934  1c1 9937   + caddc 9939   · cmul 9941  2c2 11070  cz 11377   Even ceven 41537   Odd codd 41538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-even 41539  df-odd 41540
This theorem is referenced by:  omoeALTV  41596  epee  41614  odd2prm2  41627  bgoldbtbndlem1  41693
  Copyright terms: Public domain W3C validator