Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bgoldbtbndlem1 Structured version   Visualization version   GIF version

Theorem bgoldbtbndlem1 41693
Description: Lemma 1 for bgoldbtbnd 41697: the odd numbers between 7 and 13 (exclusive) are odd Goldbach numbers. (Contributed by AV, 29-Jul-2020.)
Assertion
Ref Expression
bgoldbtbndlem1 ((𝑁 ∈ Odd ∧ 7 < 𝑁𝑁 ∈ (7[,)13)) → 𝑁 ∈ GoldbachOdd )

Proof of Theorem bgoldbtbndlem1
StepHypRef Expression
1 7re 11103 . . . . 5 7 ∈ ℝ
21rexri 10097 . . . 4 7 ∈ ℝ*
3 1nn0 11308 . . . . . . 7 1 ∈ ℕ0
4 3nn 11186 . . . . . . 7 3 ∈ ℕ
53, 4decnncl 11518 . . . . . 6 13 ∈ ℕ
65nnrei 11029 . . . . 5 13 ∈ ℝ
76rexri 10097 . . . 4 13 ∈ ℝ*
8 elico1 12218 . . . 4 ((7 ∈ ℝ*13 ∈ ℝ*) → (𝑁 ∈ (7[,)13) ↔ (𝑁 ∈ ℝ* ∧ 7 ≤ 𝑁𝑁 < 13)))
92, 7, 8mp2an 708 . . 3 (𝑁 ∈ (7[,)13) ↔ (𝑁 ∈ ℝ* ∧ 7 ≤ 𝑁𝑁 < 13))
10 7nn 11190 . . . . . . . . . 10 7 ∈ ℕ
1110nnzi 11401 . . . . . . . . 9 7 ∈ ℤ
12 oddz 41544 . . . . . . . . 9 (𝑁 ∈ Odd → 𝑁 ∈ ℤ)
13 zltp1le 11427 . . . . . . . . . 10 ((7 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (7 < 𝑁 ↔ (7 + 1) ≤ 𝑁))
14 7p1e8 11157 . . . . . . . . . . . 12 (7 + 1) = 8
1514breq1i 4660 . . . . . . . . . . 11 ((7 + 1) ≤ 𝑁 ↔ 8 ≤ 𝑁)
1615a1i 11 . . . . . . . . . 10 ((7 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((7 + 1) ≤ 𝑁 ↔ 8 ≤ 𝑁))
17 8re 11105 . . . . . . . . . . . 12 8 ∈ ℝ
1817a1i 11 . . . . . . . . . . 11 (7 ∈ ℤ → 8 ∈ ℝ)
19 zre 11381 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
20 leloe 10124 . . . . . . . . . . 11 ((8 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (8 ≤ 𝑁 ↔ (8 < 𝑁 ∨ 8 = 𝑁)))
2118, 19, 20syl2an 494 . . . . . . . . . 10 ((7 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (8 ≤ 𝑁 ↔ (8 < 𝑁 ∨ 8 = 𝑁)))
2213, 16, 213bitrd 294 . . . . . . . . 9 ((7 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (7 < 𝑁 ↔ (8 < 𝑁 ∨ 8 = 𝑁)))
2311, 12, 22sylancr 695 . . . . . . . 8 (𝑁 ∈ Odd → (7 < 𝑁 ↔ (8 < 𝑁 ∨ 8 = 𝑁)))
24 8nn 11191 . . . . . . . . . . . . . . 15 8 ∈ ℕ
2524nnzi 11401 . . . . . . . . . . . . . 14 8 ∈ ℤ
26 zltp1le 11427 . . . . . . . . . . . . . 14 ((8 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (8 < 𝑁 ↔ (8 + 1) ≤ 𝑁))
2725, 12, 26sylancr 695 . . . . . . . . . . . . 13 (𝑁 ∈ Odd → (8 < 𝑁 ↔ (8 + 1) ≤ 𝑁))
28 8p1e9 11158 . . . . . . . . . . . . . . 15 (8 + 1) = 9
2928breq1i 4660 . . . . . . . . . . . . . 14 ((8 + 1) ≤ 𝑁 ↔ 9 ≤ 𝑁)
3029a1i 11 . . . . . . . . . . . . 13 (𝑁 ∈ Odd → ((8 + 1) ≤ 𝑁 ↔ 9 ≤ 𝑁))
31 9re 11107 . . . . . . . . . . . . . . 15 9 ∈ ℝ
3231a1i 11 . . . . . . . . . . . . . 14 (𝑁 ∈ Odd → 9 ∈ ℝ)
3312zred 11482 . . . . . . . . . . . . . 14 (𝑁 ∈ Odd → 𝑁 ∈ ℝ)
3432, 33leloed 10180 . . . . . . . . . . . . 13 (𝑁 ∈ Odd → (9 ≤ 𝑁 ↔ (9 < 𝑁 ∨ 9 = 𝑁)))
3527, 30, 343bitrd 294 . . . . . . . . . . . 12 (𝑁 ∈ Odd → (8 < 𝑁 ↔ (9 < 𝑁 ∨ 9 = 𝑁)))
36 9nn 11192 . . . . . . . . . . . . . . . . . . 19 9 ∈ ℕ
3736nnzi 11401 . . . . . . . . . . . . . . . . . 18 9 ∈ ℤ
38 zltp1le 11427 . . . . . . . . . . . . . . . . . 18 ((9 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (9 < 𝑁 ↔ (9 + 1) ≤ 𝑁))
3937, 12, 38sylancr 695 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ Odd → (9 < 𝑁 ↔ (9 + 1) ≤ 𝑁))
40 9p1e10 11496 . . . . . . . . . . . . . . . . . . 19 (9 + 1) = 10
4140breq1i 4660 . . . . . . . . . . . . . . . . . 18 ((9 + 1) ≤ 𝑁10 ≤ 𝑁)
4241a1i 11 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ Odd → ((9 + 1) ≤ 𝑁10 ≤ 𝑁))
43 10re 11517 . . . . . . . . . . . . . . . . . . 19 10 ∈ ℝ
4443a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ Odd → 10 ∈ ℝ)
4544, 33leloed 10180 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ Odd → (10 ≤ 𝑁 ↔ (10 < 𝑁10 = 𝑁)))
4639, 42, 453bitrd 294 . . . . . . . . . . . . . . . 16 (𝑁 ∈ Odd → (9 < 𝑁 ↔ (10 < 𝑁10 = 𝑁)))
47 10nn 11514 . . . . . . . . . . . . . . . . . . . . . . 23 10 ∈ ℕ
4847nnzi 11401 . . . . . . . . . . . . . . . . . . . . . 22 10 ∈ ℤ
49 zltp1le 11427 . . . . . . . . . . . . . . . . . . . . . 22 ((10 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (10 < 𝑁 ↔ (10 + 1) ≤ 𝑁))
5048, 12, 49sylancr 695 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ Odd → (10 < 𝑁 ↔ (10 + 1) ≤ 𝑁))
51 dec10p 11553 . . . . . . . . . . . . . . . . . . . . . . 23 (10 + 1) = 11
5251breq1i 4660 . . . . . . . . . . . . . . . . . . . . . 22 ((10 + 1) ≤ 𝑁11 ≤ 𝑁)
5352a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ Odd → ((10 + 1) ≤ 𝑁11 ≤ 𝑁))
54 1nn 11031 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 ∈ ℕ
553, 54decnncl 11518 . . . . . . . . . . . . . . . . . . . . . . . 24 11 ∈ ℕ
5655nnrei 11029 . . . . . . . . . . . . . . . . . . . . . . 23 11 ∈ ℝ
5756a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ Odd → 11 ∈ ℝ)
5857, 33leloed 10180 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ Odd → (11 ≤ 𝑁 ↔ (11 < 𝑁11 = 𝑁)))
5950, 53, 583bitrd 294 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ Odd → (10 < 𝑁 ↔ (11 < 𝑁11 = 𝑁)))
6055nnzi 11401 . . . . . . . . . . . . . . . . . . . . . . . . . 26 11 ∈ ℤ
61 zltp1le 11427 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((11 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (11 < 𝑁 ↔ (11 + 1) ≤ 𝑁))
6260, 12, 61sylancr 695 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ Odd → (11 < 𝑁 ↔ (11 + 1) ≤ 𝑁))
6351eqcomi 2631 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 11 = (10 + 1)
6463oveq1i 6660 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (11 + 1) = ((10 + 1) + 1)
6547nncni 11030 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 10 ∈ ℂ
66 ax-1cn 9994 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1 ∈ ℂ
6765, 66, 66addassi 10048 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((10 + 1) + 1) = (10 + (1 + 1))
68 1p1e2 11134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (1 + 1) = 2
6968oveq2i 6661 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (10 + (1 + 1)) = (10 + 2)
70 dec10p 11553 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (10 + 2) = 12
7169, 70eqtri 2644 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (10 + (1 + 1)) = 12
7264, 67, 713eqtri 2648 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (11 + 1) = 12
7372breq1i 4660 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((11 + 1) ≤ 𝑁12 ≤ 𝑁)
7473a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ Odd → ((11 + 1) ≤ 𝑁12 ≤ 𝑁))
75 2nn 11185 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2 ∈ ℕ
763, 75decnncl 11518 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 12 ∈ ℕ
7776nnrei 11029 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 12 ∈ ℝ
7877a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ Odd → 12 ∈ ℝ)
7978, 33leloed 10180 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ Odd → (12 ≤ 𝑁 ↔ (12 < 𝑁12 = 𝑁)))
8062, 74, 793bitrd 294 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ Odd → (11 < 𝑁 ↔ (12 < 𝑁12 = 𝑁)))
8176nnzi 11401 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 12 ∈ ℤ
82 zltp1le 11427 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((12 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (12 < 𝑁 ↔ (12 + 1) ≤ 𝑁))
8381, 12, 82sylancr 695 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ Odd → (12 < 𝑁 ↔ (12 + 1) ≤ 𝑁))
8470eqcomi 2631 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 12 = (10 + 2)
8584oveq1i 6660 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (12 + 1) = ((10 + 2) + 1)
86 2cn 11091 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2 ∈ ℂ
8765, 86, 66addassi 10048 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((10 + 2) + 1) = (10 + (2 + 1))
88 2p1e3 11151 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (2 + 1) = 3
8988oveq2i 6661 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (10 + (2 + 1)) = (10 + 3)
90 dec10p 11553 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (10 + 3) = 13
9189, 90eqtri 2644 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (10 + (2 + 1)) = 13
9285, 87, 913eqtri 2648 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (12 + 1) = 13
9392breq1i 4660 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((12 + 1) ≤ 𝑁13 ≤ 𝑁)
9493a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ Odd → ((12 + 1) ≤ 𝑁13 ≤ 𝑁))
956a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑁 ∈ Odd → 13 ∈ ℝ)
9695, 33lenltd 10183 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ Odd → (13 ≤ 𝑁 ↔ ¬ 𝑁 < 13))
9783, 94, 963bitrd 294 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ Odd → (12 < 𝑁 ↔ ¬ 𝑁 < 13))
98 pm2.21 120 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝑁 < 13 → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd ))
9997, 98syl6bi 243 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ Odd → (12 < 𝑁 → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
10099com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (12 < 𝑁 → (𝑁 ∈ Odd → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
101 eleq1 2689 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (12 = 𝑁 → (12 ∈ Odd ↔ 𝑁 ∈ Odd ))
102 6p6e12 11602 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (6 + 6) = 12
103 6even 41620 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6 ∈ Even
104 epee 41614 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((6 ∈ Even ∧ 6 ∈ Even ) → (6 + 6) ∈ Even )
105103, 103, 104mp2an 708 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (6 + 6) ∈ Even
106102, 105eqeltrri 2698 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 12 ∈ Even
107 evennodd 41556 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (12 ∈ Even → ¬ 12 ∈ Odd )
108106, 107ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ¬ 12 ∈ Odd
109108pm2.21i 116 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (12 ∈ Odd → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd ))
110101, 109syl6bir 244 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (12 = 𝑁 → (𝑁 ∈ Odd → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
111100, 110jaoi 394 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((12 < 𝑁12 = 𝑁) → (𝑁 ∈ Odd → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
112111com12 32 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ Odd → ((12 < 𝑁12 = 𝑁) → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
11380, 112sylbid 230 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ Odd → (11 < 𝑁 → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
114113com12 32 . . . . . . . . . . . . . . . . . . . . . 22 (11 < 𝑁 → (𝑁 ∈ Odd → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
115 11gbo 41663 . . . . . . . . . . . . . . . . . . . . . . . 24 11 ∈ GoldbachOdd
116 eleq1 2689 . . . . . . . . . . . . . . . . . . . . . . . 24 (11 = 𝑁 → (11 ∈ GoldbachOdd ↔ 𝑁 ∈ GoldbachOdd ))
117115, 116mpbii 223 . . . . . . . . . . . . . . . . . . . . . . 23 (11 = 𝑁𝑁 ∈ GoldbachOdd )
1181172a1d 26 . . . . . . . . . . . . . . . . . . . . . 22 (11 = 𝑁 → (𝑁 ∈ Odd → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
119114, 118jaoi 394 . . . . . . . . . . . . . . . . . . . . 21 ((11 < 𝑁11 = 𝑁) → (𝑁 ∈ Odd → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
120119com12 32 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ Odd → ((11 < 𝑁11 = 𝑁) → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
12159, 120sylbid 230 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ Odd → (10 < 𝑁 → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
122121com12 32 . . . . . . . . . . . . . . . . . 18 (10 < 𝑁 → (𝑁 ∈ Odd → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
123 eleq1 2689 . . . . . . . . . . . . . . . . . . 19 (10 = 𝑁 → (10 ∈ Odd ↔ 𝑁 ∈ Odd ))
124 5p5e10 11596 . . . . . . . . . . . . . . . . . . . . . 22 (5 + 5) = 10
125 5odd 41619 . . . . . . . . . . . . . . . . . . . . . . 23 5 ∈ Odd
126 opoeALTV 41594 . . . . . . . . . . . . . . . . . . . . . . 23 ((5 ∈ Odd ∧ 5 ∈ Odd ) → (5 + 5) ∈ Even )
127125, 125, 126mp2an 708 . . . . . . . . . . . . . . . . . . . . . 22 (5 + 5) ∈ Even
128124, 127eqeltrri 2698 . . . . . . . . . . . . . . . . . . . . 21 10 ∈ Even
129 evennodd 41556 . . . . . . . . . . . . . . . . . . . . 21 (10 ∈ Even → ¬ 10 ∈ Odd )
130128, 129ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 ¬ 10 ∈ Odd
131130pm2.21i 116 . . . . . . . . . . . . . . . . . . 19 (10 ∈ Odd → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd ))
132123, 131syl6bir 244 . . . . . . . . . . . . . . . . . 18 (10 = 𝑁 → (𝑁 ∈ Odd → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
133122, 132jaoi 394 . . . . . . . . . . . . . . . . 17 ((10 < 𝑁10 = 𝑁) → (𝑁 ∈ Odd → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
134133com12 32 . . . . . . . . . . . . . . . 16 (𝑁 ∈ Odd → ((10 < 𝑁10 = 𝑁) → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
13546, 134sylbid 230 . . . . . . . . . . . . . . 15 (𝑁 ∈ Odd → (9 < 𝑁 → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
136135com12 32 . . . . . . . . . . . . . 14 (9 < 𝑁 → (𝑁 ∈ Odd → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
137 9gbo 41662 . . . . . . . . . . . . . . . 16 9 ∈ GoldbachOdd
138 eleq1 2689 . . . . . . . . . . . . . . . 16 (9 = 𝑁 → (9 ∈ GoldbachOdd ↔ 𝑁 ∈ GoldbachOdd ))
139137, 138mpbii 223 . . . . . . . . . . . . . . 15 (9 = 𝑁𝑁 ∈ GoldbachOdd )
1401392a1d 26 . . . . . . . . . . . . . 14 (9 = 𝑁 → (𝑁 ∈ Odd → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
141136, 140jaoi 394 . . . . . . . . . . . . 13 ((9 < 𝑁 ∨ 9 = 𝑁) → (𝑁 ∈ Odd → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
142141com12 32 . . . . . . . . . . . 12 (𝑁 ∈ Odd → ((9 < 𝑁 ∨ 9 = 𝑁) → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
14335, 142sylbid 230 . . . . . . . . . . 11 (𝑁 ∈ Odd → (8 < 𝑁 → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
144143com12 32 . . . . . . . . . 10 (8 < 𝑁 → (𝑁 ∈ Odd → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
145 eleq1 2689 . . . . . . . . . . 11 (8 = 𝑁 → (8 ∈ Odd ↔ 𝑁 ∈ Odd ))
146 8even 41622 . . . . . . . . . . . . 13 8 ∈ Even
147 evennodd 41556 . . . . . . . . . . . . 13 (8 ∈ Even → ¬ 8 ∈ Odd )
148146, 147ax-mp 5 . . . . . . . . . . . 12 ¬ 8 ∈ Odd
149148pm2.21i 116 . . . . . . . . . . 11 (8 ∈ Odd → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd ))
150145, 149syl6bir 244 . . . . . . . . . 10 (8 = 𝑁 → (𝑁 ∈ Odd → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
151144, 150jaoi 394 . . . . . . . . 9 ((8 < 𝑁 ∨ 8 = 𝑁) → (𝑁 ∈ Odd → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
152151com12 32 . . . . . . . 8 (𝑁 ∈ Odd → ((8 < 𝑁 ∨ 8 = 𝑁) → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
15323, 152sylbid 230 . . . . . . 7 (𝑁 ∈ Odd → (7 < 𝑁 → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd )))
154153imp 445 . . . . . 6 ((𝑁 ∈ Odd ∧ 7 < 𝑁) → (𝑁 < 13 → 𝑁 ∈ GoldbachOdd ))
155154com12 32 . . . . 5 (𝑁 < 13 → ((𝑁 ∈ Odd ∧ 7 < 𝑁) → 𝑁 ∈ GoldbachOdd ))
1561553ad2ant3 1084 . . . 4 ((𝑁 ∈ ℝ* ∧ 7 ≤ 𝑁𝑁 < 13) → ((𝑁 ∈ Odd ∧ 7 < 𝑁) → 𝑁 ∈ GoldbachOdd ))
157156com12 32 . . 3 ((𝑁 ∈ Odd ∧ 7 < 𝑁) → ((𝑁 ∈ ℝ* ∧ 7 ≤ 𝑁𝑁 < 13) → 𝑁 ∈ GoldbachOdd ))
1589, 157syl5bi 232 . 2 ((𝑁 ∈ Odd ∧ 7 < 𝑁) → (𝑁 ∈ (7[,)13) → 𝑁 ∈ GoldbachOdd ))
1591583impia 1261 1 ((𝑁 ∈ Odd ∧ 7 < 𝑁𝑁 ∈ (7[,)13)) → 𝑁 ∈ GoldbachOdd )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990   class class class wbr 4653  (class class class)co 6650  cr 9935  0cc0 9936  1c1 9937   + caddc 9939  *cxr 10073   < clt 10074  cle 10075  2c2 11070  3c3 11071  5c5 11073  6c6 11074  7c7 11075  8c8 11076  9c9 11077  cz 11377  cdc 11493  [,)cico 12177   Even ceven 41537   Odd codd 41538   GoldbachOdd cgbo 41635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-prm 15386  df-even 41539  df-odd 41540  df-gbo 41638
This theorem is referenced by:  bgoldbtbnd  41697
  Copyright terms: Public domain W3C validator