MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrdifwrdellem3 Structured version   Visualization version   GIF version

Theorem pmtrdifwrdellem3 17903
Description: Lemma 3 for pmtrdifwrdel 17905. (Contributed by AV, 15-Jan-2019.)
Hypotheses
Ref Expression
pmtrdifel.t 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
pmtrdifel.r 𝑅 = ran (pmTrsp‘𝑁)
pmtrdifwrdel.0 𝑈 = (𝑥 ∈ (0..^(#‘𝑊)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑊𝑥) ∖ I )))
Assertion
Ref Expression
pmtrdifwrdellem3 (𝑊 ∈ Word 𝑇 → ∀𝑖 ∈ (0..^(#‘𝑊))∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))
Distinct variable groups:   𝑥,𝑁   𝑥,𝑇   𝑥,𝑅   𝑥,𝑊   𝑇,𝑖,𝑛   𝑖,𝑊,𝑛   𝑥,𝑖
Allowed substitution hints:   𝑅(𝑖,𝑛)   𝑈(𝑥,𝑖,𝑛)   𝐾(𝑥,𝑖,𝑛)   𝑁(𝑖,𝑛)

Proof of Theorem pmtrdifwrdellem3
StepHypRef Expression
1 wrdsymbcl 13318 . . . 4 ((𝑊 ∈ Word 𝑇𝑖 ∈ (0..^(#‘𝑊))) → (𝑊𝑖) ∈ 𝑇)
2 pmtrdifel.t . . . . 5 𝑇 = ran (pmTrsp‘(𝑁 ∖ {𝐾}))
3 pmtrdifel.r . . . . 5 𝑅 = ran (pmTrsp‘𝑁)
4 eqid 2622 . . . . 5 ((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I )) = ((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I ))
52, 3, 4pmtrdifellem3 17898 . . . 4 ((𝑊𝑖) ∈ 𝑇 → ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = (((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I ))‘𝑛))
61, 5syl 17 . . 3 ((𝑊 ∈ Word 𝑇𝑖 ∈ (0..^(#‘𝑊))) → ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = (((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I ))‘𝑛))
7 pmtrdifwrdel.0 . . . . . . . 8 𝑈 = (𝑥 ∈ (0..^(#‘𝑊)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑊𝑥) ∖ I )))
87a1i 11 . . . . . . 7 ((𝑊 ∈ Word 𝑇𝑖 ∈ (0..^(#‘𝑊))) → 𝑈 = (𝑥 ∈ (0..^(#‘𝑊)) ↦ ((pmTrsp‘𝑁)‘dom ((𝑊𝑥) ∖ I ))))
9 fveq2 6191 . . . . . . . . . . 11 (𝑥 = 𝑖 → (𝑊𝑥) = (𝑊𝑖))
109difeq1d 3727 . . . . . . . . . 10 (𝑥 = 𝑖 → ((𝑊𝑥) ∖ I ) = ((𝑊𝑖) ∖ I ))
1110dmeqd 5326 . . . . . . . . 9 (𝑥 = 𝑖 → dom ((𝑊𝑥) ∖ I ) = dom ((𝑊𝑖) ∖ I ))
1211fveq2d 6195 . . . . . . . 8 (𝑥 = 𝑖 → ((pmTrsp‘𝑁)‘dom ((𝑊𝑥) ∖ I )) = ((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I )))
1312adantl 482 . . . . . . 7 (((𝑊 ∈ Word 𝑇𝑖 ∈ (0..^(#‘𝑊))) ∧ 𝑥 = 𝑖) → ((pmTrsp‘𝑁)‘dom ((𝑊𝑥) ∖ I )) = ((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I )))
14 simpr 477 . . . . . . 7 ((𝑊 ∈ Word 𝑇𝑖 ∈ (0..^(#‘𝑊))) → 𝑖 ∈ (0..^(#‘𝑊)))
15 fvexd 6203 . . . . . . 7 ((𝑊 ∈ Word 𝑇𝑖 ∈ (0..^(#‘𝑊))) → ((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I )) ∈ V)
168, 13, 14, 15fvmptd 6288 . . . . . 6 ((𝑊 ∈ Word 𝑇𝑖 ∈ (0..^(#‘𝑊))) → (𝑈𝑖) = ((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I )))
1716fveq1d 6193 . . . . 5 ((𝑊 ∈ Word 𝑇𝑖 ∈ (0..^(#‘𝑊))) → ((𝑈𝑖)‘𝑛) = (((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I ))‘𝑛))
1817eqeq2d 2632 . . . 4 ((𝑊 ∈ Word 𝑇𝑖 ∈ (0..^(#‘𝑊))) → (((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) ↔ ((𝑊𝑖)‘𝑛) = (((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I ))‘𝑛)))
1918ralbidv 2986 . . 3 ((𝑊 ∈ Word 𝑇𝑖 ∈ (0..^(#‘𝑊))) → (∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛) ↔ ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = (((pmTrsp‘𝑁)‘dom ((𝑊𝑖) ∖ I ))‘𝑛)))
206, 19mpbird 247 . 2 ((𝑊 ∈ Word 𝑇𝑖 ∈ (0..^(#‘𝑊))) → ∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))
2120ralrimiva 2966 1 (𝑊 ∈ Word 𝑇 → ∀𝑖 ∈ (0..^(#‘𝑊))∀𝑛 ∈ (𝑁 ∖ {𝐾})((𝑊𝑖)‘𝑛) = ((𝑈𝑖)‘𝑛))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  cdif 3571  {csn 4177  cmpt 4729   I cid 5023  dom cdm 5114  ran crn 5115  cfv 5888  (class class class)co 6650  0cc0 9936  ..^cfzo 12465  #chash 13117  Word cword 13291  pmTrspcpmtr 17861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-pmtr 17862
This theorem is referenced by:  pmtrdifwrdel  17905  pmtrdifwrdel2  17906
  Copyright terms: Public domain W3C validator