MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrfrn Structured version   Visualization version   Unicode version

Theorem pmtrfrn 17878
Description: A transposition (as a kind of function) is the function transposing the two points it moves. (Contributed by Stefan O'Rear, 22-Aug-2015.)
Hypotheses
Ref Expression
pmtrrn.t  |-  T  =  (pmTrsp `  D )
pmtrrn.r  |-  R  =  ran  T
pmtrfrn.p  |-  P  =  dom  ( F  \  _I  )
Assertion
Ref Expression
pmtrfrn  |-  ( F  e.  R  ->  (
( D  e.  _V  /\  P  C_  D  /\  P  ~~  2o )  /\  F  =  ( T `  P ) ) )

Proof of Theorem pmtrfrn
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noel 3919 . . . 4  |-  -.  F  e.  (/)
2 pmtrrn.r . . . . . 6  |-  R  =  ran  T
3 pmtrrn.t . . . . . . . . 9  |-  T  =  (pmTrsp `  D )
4 fvprc 6185 . . . . . . . . 9  |-  ( -.  D  e.  _V  ->  (pmTrsp `  D )  =  (/) )
53, 4syl5eq 2668 . . . . . . . 8  |-  ( -.  D  e.  _V  ->  T  =  (/) )
65rneqd 5353 . . . . . . 7  |-  ( -.  D  e.  _V  ->  ran 
T  =  ran  (/) )
7 rn0 5377 . . . . . . 7  |-  ran  (/)  =  (/)
86, 7syl6eq 2672 . . . . . 6  |-  ( -.  D  e.  _V  ->  ran 
T  =  (/) )
92, 8syl5eq 2668 . . . . 5  |-  ( -.  D  e.  _V  ->  R  =  (/) )
109eleq2d 2687 . . . 4  |-  ( -.  D  e.  _V  ->  ( F  e.  R  <->  F  e.  (/) ) )
111, 10mtbiri 317 . . 3  |-  ( -.  D  e.  _V  ->  -.  F  e.  R )
1211con4i 113 . 2  |-  ( F  e.  R  ->  D  e.  _V )
13 mptexg 6484 . . . . . . . 8  |-  ( D  e.  _V  ->  (
z  e.  D  |->  if ( z  e.  w ,  U. ( w  \  { z } ) ,  z ) )  e.  _V )
1413ralrimivw 2967 . . . . . . 7  |-  ( D  e.  _V  ->  A. w  e.  { x  e.  ~P D  |  x  ~~  2o }  ( z  e.  D  |->  if ( z  e.  w ,  U. ( w  \  { z } ) ,  z ) )  e.  _V )
15 eqid 2622 . . . . . . . 8  |-  ( w  e.  { x  e. 
~P D  |  x 
~~  2o }  |->  ( z  e.  D  |->  if ( z  e.  w ,  U. ( w  \  { z } ) ,  z ) ) )  =  ( w  e.  { x  e. 
~P D  |  x 
~~  2o }  |->  ( z  e.  D  |->  if ( z  e.  w ,  U. ( w  \  { z } ) ,  z ) ) )
1615fnmpt 6020 . . . . . . 7  |-  ( A. w  e.  { x  e.  ~P D  |  x 
~~  2o }  (
z  e.  D  |->  if ( z  e.  w ,  U. ( w  \  { z } ) ,  z ) )  e.  _V  ->  (
w  e.  { x  e.  ~P D  |  x 
~~  2o }  |->  ( z  e.  D  |->  if ( z  e.  w ,  U. ( w  \  { z } ) ,  z ) ) )  Fn  { x  e.  ~P D  |  x 
~~  2o } )
1714, 16syl 17 . . . . . 6  |-  ( D  e.  _V  ->  (
w  e.  { x  e.  ~P D  |  x 
~~  2o }  |->  ( z  e.  D  |->  if ( z  e.  w ,  U. ( w  \  { z } ) ,  z ) ) )  Fn  { x  e.  ~P D  |  x 
~~  2o } )
183pmtrfval 17870 . . . . . . 7  |-  ( D  e.  _V  ->  T  =  ( w  e. 
{ x  e.  ~P D  |  x  ~~  2o }  |->  ( z  e.  D  |->  if ( z  e.  w ,  U. ( w  \  { z } ) ,  z ) ) ) )
1918fneq1d 5981 . . . . . 6  |-  ( D  e.  _V  ->  ( T  Fn  { x  e.  ~P D  |  x 
~~  2o }  <->  ( w  e.  { x  e.  ~P D  |  x  ~~  2o }  |->  ( z  e.  D  |->  if ( z  e.  w ,  U. ( w  \  { z } ) ,  z ) ) )  Fn 
{ x  e.  ~P D  |  x  ~~  2o } ) )
2017, 19mpbird 247 . . . . 5  |-  ( D  e.  _V  ->  T  Fn  { x  e.  ~P D  |  x  ~~  2o } )
21 fvelrnb 6243 . . . . 5  |-  ( T  Fn  { x  e. 
~P D  |  x 
~~  2o }  ->  ( F  e.  ran  T  <->  E. y  e.  { x  e.  ~P D  |  x 
~~  2o }  ( T `  y )  =  F ) )
2220, 21syl 17 . . . 4  |-  ( D  e.  _V  ->  ( F  e.  ran  T  <->  E. y  e.  { x  e.  ~P D  |  x  ~~  2o }  ( T `  y )  =  F ) )
232eleq2i 2693 . . . 4  |-  ( F  e.  R  <->  F  e.  ran  T )
24 breq1 4656 . . . . . 6  |-  ( x  =  y  ->  (
x  ~~  2o  <->  y  ~~  2o ) )
2524rexrab 3370 . . . . 5  |-  ( E. y  e.  { x  e.  ~P D  |  x 
~~  2o }  ( T `  y )  =  F  <->  E. y  e.  ~P  D ( y  ~~  2o  /\  ( T `  y )  =  F ) )
2625bicomi 214 . . . 4  |-  ( E. y  e.  ~P  D
( y  ~~  2o  /\  ( T `  y
)  =  F )  <->  E. y  e.  { x  e.  ~P D  |  x 
~~  2o }  ( T `  y )  =  F )
2722, 23, 263bitr4g 303 . . 3  |-  ( D  e.  _V  ->  ( F  e.  R  <->  E. y  e.  ~P  D ( y 
~~  2o  /\  ( T `  y )  =  F ) ) )
28 elpwi 4168 . . . . 5  |-  ( y  e.  ~P D  -> 
y  C_  D )
29 simp1 1061 . . . . . . . . . 10  |-  ( ( D  e.  _V  /\  y  C_  D  /\  y  ~~  2o )  ->  D  e.  _V )
303pmtrmvd 17876 . . . . . . . . . . 11  |-  ( ( D  e.  _V  /\  y  C_  D  /\  y  ~~  2o )  ->  dom  ( ( T `  y )  \  _I  )  =  y )
31 simp2 1062 . . . . . . . . . . 11  |-  ( ( D  e.  _V  /\  y  C_  D  /\  y  ~~  2o )  ->  y  C_  D )
3230, 31eqsstrd 3639 . . . . . . . . . 10  |-  ( ( D  e.  _V  /\  y  C_  D  /\  y  ~~  2o )  ->  dom  ( ( T `  y )  \  _I  )  C_  D )
33 simp3 1063 . . . . . . . . . . 11  |-  ( ( D  e.  _V  /\  y  C_  D  /\  y  ~~  2o )  ->  y  ~~  2o )
3430, 33eqbrtrd 4675 . . . . . . . . . 10  |-  ( ( D  e.  _V  /\  y  C_  D  /\  y  ~~  2o )  ->  dom  ( ( T `  y )  \  _I  )  ~~  2o )
3529, 32, 343jca 1242 . . . . . . . . 9  |-  ( ( D  e.  _V  /\  y  C_  D  /\  y  ~~  2o )  ->  ( D  e.  _V  /\  dom  ( ( T `  y )  \  _I  )  C_  D  /\  dom  ( ( T `  y )  \  _I  )  ~~  2o ) )
3630eqcomd 2628 . . . . . . . . . 10  |-  ( ( D  e.  _V  /\  y  C_  D  /\  y  ~~  2o )  ->  y  =  dom  ( ( T `
 y )  \  _I  ) )
3736fveq2d 6195 . . . . . . . . 9  |-  ( ( D  e.  _V  /\  y  C_  D  /\  y  ~~  2o )  ->  ( T `  y )  =  ( T `  dom  ( ( T `  y )  \  _I  ) ) )
3835, 37jca 554 . . . . . . . 8  |-  ( ( D  e.  _V  /\  y  C_  D  /\  y  ~~  2o )  ->  (
( D  e.  _V  /\ 
dom  ( ( T `
 y )  \  _I  )  C_  D  /\  dom  ( ( T `  y )  \  _I  )  ~~  2o )  /\  ( T `  y )  =  ( T `  dom  ( ( T `  y )  \  _I  ) ) ) )
39 difeq1 3721 . . . . . . . . . . 11  |-  ( ( T `  y )  =  F  ->  (
( T `  y
)  \  _I  )  =  ( F  \  _I  ) )
4039dmeqd 5326 . . . . . . . . . 10  |-  ( ( T `  y )  =  F  ->  dom  ( ( T `  y )  \  _I  )  =  dom  ( F 
\  _I  ) )
41 pmtrfrn.p . . . . . . . . . 10  |-  P  =  dom  ( F  \  _I  )
4240, 41syl6eqr 2674 . . . . . . . . 9  |-  ( ( T `  y )  =  F  ->  dom  ( ( T `  y )  \  _I  )  =  P )
43 sseq1 3626 . . . . . . . . . . . 12  |-  ( dom  ( ( T `  y )  \  _I  )  =  P  ->  ( dom  ( ( T `
 y )  \  _I  )  C_  D  <->  P  C_  D
) )
44 breq1 4656 . . . . . . . . . . . 12  |-  ( dom  ( ( T `  y )  \  _I  )  =  P  ->  ( dom  ( ( T `
 y )  \  _I  )  ~~  2o  <->  P  ~~  2o ) )
4543, 443anbi23d 1402 . . . . . . . . . . 11  |-  ( dom  ( ( T `  y )  \  _I  )  =  P  ->  ( ( D  e.  _V  /\ 
dom  ( ( T `
 y )  \  _I  )  C_  D  /\  dom  ( ( T `  y )  \  _I  )  ~~  2o )  <->  ( D  e.  _V  /\  P  C_  D  /\  P  ~~  2o ) ) )
4645adantl 482 . . . . . . . . . 10  |-  ( ( ( T `  y
)  =  F  /\  dom  ( ( T `  y )  \  _I  )  =  P )  ->  ( ( D  e. 
_V  /\  dom  ( ( T `  y ) 
\  _I  )  C_  D  /\  dom  ( ( T `  y ) 
\  _I  )  ~~  2o )  <->  ( D  e. 
_V  /\  P  C_  D  /\  P  ~~  2o ) ) )
47 simpl 473 . . . . . . . . . . 11  |-  ( ( ( T `  y
)  =  F  /\  dom  ( ( T `  y )  \  _I  )  =  P )  ->  ( T `  y
)  =  F )
48 fveq2 6191 . . . . . . . . . . . 12  |-  ( dom  ( ( T `  y )  \  _I  )  =  P  ->  ( T `  dom  (
( T `  y
)  \  _I  )
)  =  ( T `
 P ) )
4948adantl 482 . . . . . . . . . . 11  |-  ( ( ( T `  y
)  =  F  /\  dom  ( ( T `  y )  \  _I  )  =  P )  ->  ( T `  dom  ( ( T `  y )  \  _I  ) )  =  ( T `  P ) )
5047, 49eqeq12d 2637 . . . . . . . . . 10  |-  ( ( ( T `  y
)  =  F  /\  dom  ( ( T `  y )  \  _I  )  =  P )  ->  ( ( T `  y )  =  ( T `  dom  (
( T `  y
)  \  _I  )
)  <->  F  =  ( T `  P )
) )
5146, 50anbi12d 747 . . . . . . . . 9  |-  ( ( ( T `  y
)  =  F  /\  dom  ( ( T `  y )  \  _I  )  =  P )  ->  ( ( ( D  e.  _V  /\  dom  ( ( T `  y )  \  _I  )  C_  D  /\  dom  ( ( T `  y )  \  _I  )  ~~  2o )  /\  ( T `  y )  =  ( T `  dom  ( ( T `  y )  \  _I  ) ) )  <->  ( ( D  e.  _V  /\  P  C_  D  /\  P  ~~  2o )  /\  F  =  ( T `  P
) ) ) )
5242, 51mpdan 702 . . . . . . . 8  |-  ( ( T `  y )  =  F  ->  (
( ( D  e. 
_V  /\  dom  ( ( T `  y ) 
\  _I  )  C_  D  /\  dom  ( ( T `  y ) 
\  _I  )  ~~  2o )  /\  ( T `  y )  =  ( T `  dom  ( ( T `  y )  \  _I  ) ) )  <->  ( ( D  e.  _V  /\  P  C_  D  /\  P  ~~  2o )  /\  F  =  ( T `  P
) ) ) )
5338, 52syl5ibcom 235 . . . . . . 7  |-  ( ( D  e.  _V  /\  y  C_  D  /\  y  ~~  2o )  ->  (
( T `  y
)  =  F  -> 
( ( D  e. 
_V  /\  P  C_  D  /\  P  ~~  2o )  /\  F  =  ( T `  P ) ) ) )
54533exp 1264 . . . . . 6  |-  ( D  e.  _V  ->  (
y  C_  D  ->  ( y  ~~  2o  ->  ( ( T `  y
)  =  F  -> 
( ( D  e. 
_V  /\  P  C_  D  /\  P  ~~  2o )  /\  F  =  ( T `  P ) ) ) ) ) )
5554imp4a 614 . . . . 5  |-  ( D  e.  _V  ->  (
y  C_  D  ->  ( ( y  ~~  2o  /\  ( T `  y
)  =  F )  ->  ( ( D  e.  _V  /\  P  C_  D  /\  P  ~~  2o )  /\  F  =  ( T `  P
) ) ) ) )
5628, 55syl5 34 . . . 4  |-  ( D  e.  _V  ->  (
y  e.  ~P D  ->  ( ( y  ~~  2o  /\  ( T `  y )  =  F )  ->  ( ( D  e.  _V  /\  P  C_  D  /\  P  ~~  2o )  /\  F  =  ( T `  P
) ) ) ) )
5756rexlimdv 3030 . . 3  |-  ( D  e.  _V  ->  ( E. y  e.  ~P  D ( y  ~~  2o  /\  ( T `  y )  =  F )  ->  ( ( D  e.  _V  /\  P  C_  D  /\  P  ~~  2o )  /\  F  =  ( T `  P
) ) ) )
5827, 57sylbid 230 . 2  |-  ( D  e.  _V  ->  ( F  e.  R  ->  ( ( D  e.  _V  /\  P  C_  D  /\  P  ~~  2o )  /\  F  =  ( T `  P ) ) ) )
5912, 58mpcom 38 1  |-  ( F  e.  R  ->  (
( D  e.  _V  /\  P  C_  D  /\  P  ~~  2o )  /\  F  =  ( T `  P ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    \ cdif 3571    C_ wss 3574   (/)c0 3915   ifcif 4086   ~Pcpw 4158   {csn 4177   U.cuni 4436   class class class wbr 4653    |-> cmpt 4729    _I cid 5023   dom cdm 5114   ran crn 5115    Fn wfn 5883   ` cfv 5888   2oc2o 7554    ~~ cen 7952  pmTrspcpmtr 17861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-fin 7959  df-pmtr 17862
This theorem is referenced by:  pmtrffv  17879  pmtrrn2  17880  pmtrfinv  17881  pmtrfmvdn0  17882  pmtrff1o  17883  pmtrfcnv  17884  pmtrfb  17885
  Copyright terms: Public domain W3C validator