MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmdvdsexp Structured version   Visualization version   GIF version

Theorem prmdvdsexp 15427
Description: A prime divides a positive power of an integer iff it divides the integer. (Contributed by Mario Carneiro, 24-Feb-2014.) (Revised by Mario Carneiro, 17-Jul-2014.)
Assertion
Ref Expression
prmdvdsexp ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (𝐴𝑁) ↔ 𝑃𝐴))

Proof of Theorem prmdvdsexp
Dummy variables 𝑚 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6658 . . . . . . 7 (𝑚 = 1 → (𝐴𝑚) = (𝐴↑1))
21breq2d 4665 . . . . . 6 (𝑚 = 1 → (𝑃 ∥ (𝐴𝑚) ↔ 𝑃 ∥ (𝐴↑1)))
32bibi1d 333 . . . . 5 (𝑚 = 1 → ((𝑃 ∥ (𝐴𝑚) ↔ 𝑃𝐴) ↔ (𝑃 ∥ (𝐴↑1) ↔ 𝑃𝐴)))
43imbi2d 330 . . . 4 (𝑚 = 1 → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴𝑚) ↔ 𝑃𝐴)) ↔ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴↑1) ↔ 𝑃𝐴))))
5 oveq2 6658 . . . . . . 7 (𝑚 = 𝑘 → (𝐴𝑚) = (𝐴𝑘))
65breq2d 4665 . . . . . 6 (𝑚 = 𝑘 → (𝑃 ∥ (𝐴𝑚) ↔ 𝑃 ∥ (𝐴𝑘)))
76bibi1d 333 . . . . 5 (𝑚 = 𝑘 → ((𝑃 ∥ (𝐴𝑚) ↔ 𝑃𝐴) ↔ (𝑃 ∥ (𝐴𝑘) ↔ 𝑃𝐴)))
87imbi2d 330 . . . 4 (𝑚 = 𝑘 → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴𝑚) ↔ 𝑃𝐴)) ↔ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴𝑘) ↔ 𝑃𝐴))))
9 oveq2 6658 . . . . . . 7 (𝑚 = (𝑘 + 1) → (𝐴𝑚) = (𝐴↑(𝑘 + 1)))
109breq2d 4665 . . . . . 6 (𝑚 = (𝑘 + 1) → (𝑃 ∥ (𝐴𝑚) ↔ 𝑃 ∥ (𝐴↑(𝑘 + 1))))
1110bibi1d 333 . . . . 5 (𝑚 = (𝑘 + 1) → ((𝑃 ∥ (𝐴𝑚) ↔ 𝑃𝐴) ↔ (𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ 𝑃𝐴)))
1211imbi2d 330 . . . 4 (𝑚 = (𝑘 + 1) → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴𝑚) ↔ 𝑃𝐴)) ↔ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ 𝑃𝐴))))
13 oveq2 6658 . . . . . . 7 (𝑚 = 𝑁 → (𝐴𝑚) = (𝐴𝑁))
1413breq2d 4665 . . . . . 6 (𝑚 = 𝑁 → (𝑃 ∥ (𝐴𝑚) ↔ 𝑃 ∥ (𝐴𝑁)))
1514bibi1d 333 . . . . 5 (𝑚 = 𝑁 → ((𝑃 ∥ (𝐴𝑚) ↔ 𝑃𝐴) ↔ (𝑃 ∥ (𝐴𝑁) ↔ 𝑃𝐴)))
1615imbi2d 330 . . . 4 (𝑚 = 𝑁 → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴𝑚) ↔ 𝑃𝐴)) ↔ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴𝑁) ↔ 𝑃𝐴))))
17 zcn 11382 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
1817adantl 482 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℂ)
1918exp1d 13003 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝐴↑1) = 𝐴)
2019breq2d 4665 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴↑1) ↔ 𝑃𝐴))
21 nnnn0 11299 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
22 expp1 12867 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
2318, 21, 22syl2an 494 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
2423breq2d 4665 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → (𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ 𝑃 ∥ ((𝐴𝑘) · 𝐴)))
25 simpll 790 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → 𝑃 ∈ ℙ)
26 simpr 477 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → 𝐴 ∈ ℤ)
27 zexpcl 12875 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℤ)
2826, 21, 27syl2an 494 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℤ)
29 simplr 792 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℤ)
30 euclemma 15425 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ (𝐴𝑘) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ ((𝐴𝑘) · 𝐴) ↔ (𝑃 ∥ (𝐴𝑘) ∨ 𝑃𝐴)))
3125, 28, 29, 30syl3anc 1326 . . . . . . . 8 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → (𝑃 ∥ ((𝐴𝑘) · 𝐴) ↔ (𝑃 ∥ (𝐴𝑘) ∨ 𝑃𝐴)))
3224, 31bitrd 268 . . . . . . 7 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → (𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ (𝑃 ∥ (𝐴𝑘) ∨ 𝑃𝐴)))
33 orbi1 742 . . . . . . . . 9 ((𝑃 ∥ (𝐴𝑘) ↔ 𝑃𝐴) → ((𝑃 ∥ (𝐴𝑘) ∨ 𝑃𝐴) ↔ (𝑃𝐴𝑃𝐴)))
34 oridm 536 . . . . . . . . 9 ((𝑃𝐴𝑃𝐴) ↔ 𝑃𝐴)
3533, 34syl6bb 276 . . . . . . . 8 ((𝑃 ∥ (𝐴𝑘) ↔ 𝑃𝐴) → ((𝑃 ∥ (𝐴𝑘) ∨ 𝑃𝐴) ↔ 𝑃𝐴))
3635bibi2d 332 . . . . . . 7 ((𝑃 ∥ (𝐴𝑘) ↔ 𝑃𝐴) → ((𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ (𝑃 ∥ (𝐴𝑘) ∨ 𝑃𝐴)) ↔ (𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ 𝑃𝐴)))
3732, 36syl5ibcom 235 . . . . . 6 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑘 ∈ ℕ) → ((𝑃 ∥ (𝐴𝑘) ↔ 𝑃𝐴) → (𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ 𝑃𝐴)))
3837expcom 451 . . . . 5 (𝑘 ∈ ℕ → ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → ((𝑃 ∥ (𝐴𝑘) ↔ 𝑃𝐴) → (𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ 𝑃𝐴))))
3938a2d 29 . . . 4 (𝑘 ∈ ℕ → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴𝑘) ↔ 𝑃𝐴)) → ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴↑(𝑘 + 1)) ↔ 𝑃𝐴))))
404, 8, 12, 16, 20, 39nnind 11038 . . 3 (𝑁 ∈ ℕ → ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (𝑃 ∥ (𝐴𝑁) ↔ 𝑃𝐴)))
4140impcom 446 . 2 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ) ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (𝐴𝑁) ↔ 𝑃𝐴))
42413impa 1259 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (𝐴𝑁) ↔ 𝑃𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990   class class class wbr 4653  (class class class)co 6650  cc 9934  1c1 9937   + caddc 9939   · cmul 9941  cn 11020  0cn0 11292  cz 11377  cexp 12860  cdvds 14983  cprime 15385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386
This theorem is referenced by:  prmdvdsexpb  15428  rpexp  15432  pythagtriplem4  15524  lgsqr  25076  lgsqrmodndvds  25078  2sqlem3  25145  etransclem41  40492  lighneallem4  41527
  Copyright terms: Public domain W3C validator