MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbagsn Structured version   Visualization version   GIF version

Theorem psrbagsn 19495
Description: A singleton bag is a bag. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Hypothesis
Ref Expression
psrbag0.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrbagsn (𝐼𝑉 → (𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) ∈ 𝐷)
Distinct variable groups:   𝑓,𝐼,𝑥   𝑓,𝐾,𝑥
Allowed substitution hints:   𝐷(𝑥,𝑓)   𝑉(𝑥,𝑓)

Proof of Theorem psrbagsn
StepHypRef Expression
1 1nn0 11308 . . . . . . 7 1 ∈ ℕ0
2 0nn0 11307 . . . . . . 7 0 ∈ ℕ0
31, 2keepel 4155 . . . . . 6 if(𝑥 = 𝐾, 1, 0) ∈ ℕ0
43a1i 11 . . . . 5 ((⊤ ∧ 𝑥𝐼) → if(𝑥 = 𝐾, 1, 0) ∈ ℕ0)
5 eqid 2622 . . . . 5 (𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) = (𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0))
64, 5fmptd 6385 . . . 4 (⊤ → (𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)):𝐼⟶ℕ0)
76trud 1493 . . 3 (𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)):𝐼⟶ℕ0
85mptpreima 5628 . . . 4 ((𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) “ ℕ) = {𝑥𝐼 ∣ if(𝑥 = 𝐾, 1, 0) ∈ ℕ}
9 snfi 8038 . . . . . 6 {𝐾} ∈ Fin
10 inss1 3833 . . . . . . 7 ({𝑥𝑥 = 𝐾} ∩ 𝐼) ⊆ {𝑥𝑥 = 𝐾}
11 dfrab2 3903 . . . . . . 7 {𝑥𝐼𝑥 = 𝐾} = ({𝑥𝑥 = 𝐾} ∩ 𝐼)
12 df-sn 4178 . . . . . . 7 {𝐾} = {𝑥𝑥 = 𝐾}
1310, 11, 123sstr4i 3644 . . . . . 6 {𝑥𝐼𝑥 = 𝐾} ⊆ {𝐾}
14 ssfi 8180 . . . . . 6 (({𝐾} ∈ Fin ∧ {𝑥𝐼𝑥 = 𝐾} ⊆ {𝐾}) → {𝑥𝐼𝑥 = 𝐾} ∈ Fin)
159, 13, 14mp2an 708 . . . . 5 {𝑥𝐼𝑥 = 𝐾} ∈ Fin
16 0nnn 11052 . . . . . . . . 9 ¬ 0 ∈ ℕ
17 iffalse 4095 . . . . . . . . . 10 𝑥 = 𝐾 → if(𝑥 = 𝐾, 1, 0) = 0)
1817eleq1d 2686 . . . . . . . . 9 𝑥 = 𝐾 → (if(𝑥 = 𝐾, 1, 0) ∈ ℕ ↔ 0 ∈ ℕ))
1916, 18mtbiri 317 . . . . . . . 8 𝑥 = 𝐾 → ¬ if(𝑥 = 𝐾, 1, 0) ∈ ℕ)
2019con4i 113 . . . . . . 7 (if(𝑥 = 𝐾, 1, 0) ∈ ℕ → 𝑥 = 𝐾)
2120a1i 11 . . . . . 6 (𝑥𝐼 → (if(𝑥 = 𝐾, 1, 0) ∈ ℕ → 𝑥 = 𝐾))
2221ss2rabi 3684 . . . . 5 {𝑥𝐼 ∣ if(𝑥 = 𝐾, 1, 0) ∈ ℕ} ⊆ {𝑥𝐼𝑥 = 𝐾}
23 ssfi 8180 . . . . 5 (({𝑥𝐼𝑥 = 𝐾} ∈ Fin ∧ {𝑥𝐼 ∣ if(𝑥 = 𝐾, 1, 0) ∈ ℕ} ⊆ {𝑥𝐼𝑥 = 𝐾}) → {𝑥𝐼 ∣ if(𝑥 = 𝐾, 1, 0) ∈ ℕ} ∈ Fin)
2415, 22, 23mp2an 708 . . . 4 {𝑥𝐼 ∣ if(𝑥 = 𝐾, 1, 0) ∈ ℕ} ∈ Fin
258, 24eqeltri 2697 . . 3 ((𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) “ ℕ) ∈ Fin
267, 25pm3.2i 471 . 2 ((𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)):𝐼⟶ℕ0 ∧ ((𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) “ ℕ) ∈ Fin)
27 psrbag0.d . . 3 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
2827psrbag 19364 . 2 (𝐼𝑉 → ((𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) ∈ 𝐷 ↔ ((𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)):𝐼⟶ℕ0 ∧ ((𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) “ ℕ) ∈ Fin)))
2926, 28mpbiri 248 1 (𝐼𝑉 → (𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wtru 1484  wcel 1990  {cab 2608  {crab 2916  cin 3573  wss 3574  ifcif 4086  {csn 4177  cmpt 4729  ccnv 5113  cima 5117  wf 5884  (class class class)co 6650  𝑚 cmap 7857  Fincfn 7955  0cc0 9936  1c1 9937  cn 11020  0cn0 11292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293
This theorem is referenced by:  evlslem1  19515
  Copyright terms: Public domain W3C validator