MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdstgpd Structured version   Visualization version   GIF version

Theorem prdstgpd 21928
Description: The product of a family of topological groups is a topological group. (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
prdstgpd.y 𝑌 = (𝑆Xs𝑅)
prdstgpd.i (𝜑𝐼𝑊)
prdstgpd.s (𝜑𝑆𝑉)
prdstgpd.r (𝜑𝑅:𝐼⟶TopGrp)
Assertion
Ref Expression
prdstgpd (𝜑𝑌 ∈ TopGrp)

Proof of Theorem prdstgpd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdstgpd.y . . 3 𝑌 = (𝑆Xs𝑅)
2 prdstgpd.i . . 3 (𝜑𝐼𝑊)
3 prdstgpd.s . . 3 (𝜑𝑆𝑉)
4 prdstgpd.r . . . 4 (𝜑𝑅:𝐼⟶TopGrp)
5 tgpgrp 21882 . . . . 5 (𝑥 ∈ TopGrp → 𝑥 ∈ Grp)
65ssriv 3607 . . . 4 TopGrp ⊆ Grp
7 fss 6056 . . . 4 ((𝑅:𝐼⟶TopGrp ∧ TopGrp ⊆ Grp) → 𝑅:𝐼⟶Grp)
84, 6, 7sylancl 694 . . 3 (𝜑𝑅:𝐼⟶Grp)
91, 2, 3, 8prdsgrpd 17525 . 2 (𝜑𝑌 ∈ Grp)
10 tgptmd 21883 . . . . 5 (𝑥 ∈ TopGrp → 𝑥 ∈ TopMnd)
1110ssriv 3607 . . . 4 TopGrp ⊆ TopMnd
12 fss 6056 . . . 4 ((𝑅:𝐼⟶TopGrp ∧ TopGrp ⊆ TopMnd) → 𝑅:𝐼⟶TopMnd)
134, 11, 12sylancl 694 . . 3 (𝜑𝑅:𝐼⟶TopMnd)
141, 2, 3, 13prdstmdd 21927 . 2 (𝜑𝑌 ∈ TopMnd)
15 eqid 2622 . . . . . . . 8 (Base‘𝑌) = (Base‘𝑌)
16 eqid 2622 . . . . . . . 8 (invg𝑌) = (invg𝑌)
1715, 16grpinvf 17466 . . . . . . 7 (𝑌 ∈ Grp → (invg𝑌):(Base‘𝑌)⟶(Base‘𝑌))
189, 17syl 17 . . . . . 6 (𝜑 → (invg𝑌):(Base‘𝑌)⟶(Base‘𝑌))
1918feqmptd 6249 . . . . 5 (𝜑 → (invg𝑌) = (𝑥 ∈ (Base‘𝑌) ↦ ((invg𝑌)‘𝑥)))
202adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑌)) → 𝐼𝑊)
213adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑌)) → 𝑆𝑉)
228adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑌)) → 𝑅:𝐼⟶Grp)
23 simpr 477 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑌)) → 𝑥 ∈ (Base‘𝑌))
241, 20, 21, 22, 15, 16, 23prdsinvgd 17526 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑌)) → ((invg𝑌)‘𝑥) = (𝑦𝐼 ↦ ((invg‘(𝑅𝑦))‘(𝑥𝑦))))
2524mpteq2dva 4744 . . . . 5 (𝜑 → (𝑥 ∈ (Base‘𝑌) ↦ ((invg𝑌)‘𝑥)) = (𝑥 ∈ (Base‘𝑌) ↦ (𝑦𝐼 ↦ ((invg‘(𝑅𝑦))‘(𝑥𝑦)))))
2619, 25eqtrd 2656 . . . 4 (𝜑 → (invg𝑌) = (𝑥 ∈ (Base‘𝑌) ↦ (𝑦𝐼 ↦ ((invg‘(𝑅𝑦))‘(𝑥𝑦)))))
27 eqid 2622 . . . . 5 (∏t‘(TopOpen ∘ 𝑅)) = (∏t‘(TopOpen ∘ 𝑅))
28 eqid 2622 . . . . . . 7 (TopOpen‘𝑌) = (TopOpen‘𝑌)
2928, 15tmdtopon 21885 . . . . . 6 (𝑌 ∈ TopMnd → (TopOpen‘𝑌) ∈ (TopOn‘(Base‘𝑌)))
3014, 29syl 17 . . . . 5 (𝜑 → (TopOpen‘𝑌) ∈ (TopOn‘(Base‘𝑌)))
31 topnfn 16086 . . . . . . 7 TopOpen Fn V
32 ffn 6045 . . . . . . . . 9 (𝑅:𝐼⟶TopGrp → 𝑅 Fn 𝐼)
334, 32syl 17 . . . . . . . 8 (𝜑𝑅 Fn 𝐼)
34 dffn2 6047 . . . . . . . 8 (𝑅 Fn 𝐼𝑅:𝐼⟶V)
3533, 34sylib 208 . . . . . . 7 (𝜑𝑅:𝐼⟶V)
36 fnfco 6069 . . . . . . 7 ((TopOpen Fn V ∧ 𝑅:𝐼⟶V) → (TopOpen ∘ 𝑅) Fn 𝐼)
3731, 35, 36sylancr 695 . . . . . 6 (𝜑 → (TopOpen ∘ 𝑅) Fn 𝐼)
38 fvco3 6275 . . . . . . . . 9 ((𝑅:𝐼⟶TopGrp ∧ 𝑦𝐼) → ((TopOpen ∘ 𝑅)‘𝑦) = (TopOpen‘(𝑅𝑦)))
394, 38sylan 488 . . . . . . . 8 ((𝜑𝑦𝐼) → ((TopOpen ∘ 𝑅)‘𝑦) = (TopOpen‘(𝑅𝑦)))
404ffvelrnda 6359 . . . . . . . . 9 ((𝜑𝑦𝐼) → (𝑅𝑦) ∈ TopGrp)
41 eqid 2622 . . . . . . . . . 10 (TopOpen‘(𝑅𝑦)) = (TopOpen‘(𝑅𝑦))
42 eqid 2622 . . . . . . . . . 10 (Base‘(𝑅𝑦)) = (Base‘(𝑅𝑦))
4341, 42tgptopon 21886 . . . . . . . . 9 ((𝑅𝑦) ∈ TopGrp → (TopOpen‘(𝑅𝑦)) ∈ (TopOn‘(Base‘(𝑅𝑦))))
44 topontop 20718 . . . . . . . . 9 ((TopOpen‘(𝑅𝑦)) ∈ (TopOn‘(Base‘(𝑅𝑦))) → (TopOpen‘(𝑅𝑦)) ∈ Top)
4540, 43, 443syl 18 . . . . . . . 8 ((𝜑𝑦𝐼) → (TopOpen‘(𝑅𝑦)) ∈ Top)
4639, 45eqeltrd 2701 . . . . . . 7 ((𝜑𝑦𝐼) → ((TopOpen ∘ 𝑅)‘𝑦) ∈ Top)
4746ralrimiva 2966 . . . . . 6 (𝜑 → ∀𝑦𝐼 ((TopOpen ∘ 𝑅)‘𝑦) ∈ Top)
48 ffnfv 6388 . . . . . 6 ((TopOpen ∘ 𝑅):𝐼⟶Top ↔ ((TopOpen ∘ 𝑅) Fn 𝐼 ∧ ∀𝑦𝐼 ((TopOpen ∘ 𝑅)‘𝑦) ∈ Top))
4937, 47, 48sylanbrc 698 . . . . 5 (𝜑 → (TopOpen ∘ 𝑅):𝐼⟶Top)
5030adantr 481 . . . . . . 7 ((𝜑𝑦𝐼) → (TopOpen‘𝑌) ∈ (TopOn‘(Base‘𝑌)))
511, 3, 2, 33, 28prdstopn 21431 . . . . . . . . . . . . 13 (𝜑 → (TopOpen‘𝑌) = (∏t‘(TopOpen ∘ 𝑅)))
5251adantr 481 . . . . . . . . . . . 12 ((𝜑𝑦𝐼) → (TopOpen‘𝑌) = (∏t‘(TopOpen ∘ 𝑅)))
5352eqcomd 2628 . . . . . . . . . . 11 ((𝜑𝑦𝐼) → (∏t‘(TopOpen ∘ 𝑅)) = (TopOpen‘𝑌))
5453, 50eqeltrd 2701 . . . . . . . . . 10 ((𝜑𝑦𝐼) → (∏t‘(TopOpen ∘ 𝑅)) ∈ (TopOn‘(Base‘𝑌)))
55 toponuni 20719 . . . . . . . . . 10 ((∏t‘(TopOpen ∘ 𝑅)) ∈ (TopOn‘(Base‘𝑌)) → (Base‘𝑌) = (∏t‘(TopOpen ∘ 𝑅)))
56 mpteq1 4737 . . . . . . . . . 10 ((Base‘𝑌) = (∏t‘(TopOpen ∘ 𝑅)) → (𝑥 ∈ (Base‘𝑌) ↦ (𝑥𝑦)) = (𝑥 (∏t‘(TopOpen ∘ 𝑅)) ↦ (𝑥𝑦)))
5754, 55, 563syl 18 . . . . . . . . 9 ((𝜑𝑦𝐼) → (𝑥 ∈ (Base‘𝑌) ↦ (𝑥𝑦)) = (𝑥 (∏t‘(TopOpen ∘ 𝑅)) ↦ (𝑥𝑦)))
582adantr 481 . . . . . . . . . 10 ((𝜑𝑦𝐼) → 𝐼𝑊)
5949adantr 481 . . . . . . . . . 10 ((𝜑𝑦𝐼) → (TopOpen ∘ 𝑅):𝐼⟶Top)
60 simpr 477 . . . . . . . . . 10 ((𝜑𝑦𝐼) → 𝑦𝐼)
61 eqid 2622 . . . . . . . . . . 11 (∏t‘(TopOpen ∘ 𝑅)) = (∏t‘(TopOpen ∘ 𝑅))
6261, 27ptpjcn 21414 . . . . . . . . . 10 ((𝐼𝑊 ∧ (TopOpen ∘ 𝑅):𝐼⟶Top ∧ 𝑦𝐼) → (𝑥 (∏t‘(TopOpen ∘ 𝑅)) ↦ (𝑥𝑦)) ∈ ((∏t‘(TopOpen ∘ 𝑅)) Cn ((TopOpen ∘ 𝑅)‘𝑦)))
6358, 59, 60, 62syl3anc 1326 . . . . . . . . 9 ((𝜑𝑦𝐼) → (𝑥 (∏t‘(TopOpen ∘ 𝑅)) ↦ (𝑥𝑦)) ∈ ((∏t‘(TopOpen ∘ 𝑅)) Cn ((TopOpen ∘ 𝑅)‘𝑦)))
6457, 63eqeltrd 2701 . . . . . . . 8 ((𝜑𝑦𝐼) → (𝑥 ∈ (Base‘𝑌) ↦ (𝑥𝑦)) ∈ ((∏t‘(TopOpen ∘ 𝑅)) Cn ((TopOpen ∘ 𝑅)‘𝑦)))
6553, 39oveq12d 6668 . . . . . . . 8 ((𝜑𝑦𝐼) → ((∏t‘(TopOpen ∘ 𝑅)) Cn ((TopOpen ∘ 𝑅)‘𝑦)) = ((TopOpen‘𝑌) Cn (TopOpen‘(𝑅𝑦))))
6664, 65eleqtrd 2703 . . . . . . 7 ((𝜑𝑦𝐼) → (𝑥 ∈ (Base‘𝑌) ↦ (𝑥𝑦)) ∈ ((TopOpen‘𝑌) Cn (TopOpen‘(𝑅𝑦))))
67 eqid 2622 . . . . . . . . 9 (invg‘(𝑅𝑦)) = (invg‘(𝑅𝑦))
6841, 67tgpinv 21889 . . . . . . . 8 ((𝑅𝑦) ∈ TopGrp → (invg‘(𝑅𝑦)) ∈ ((TopOpen‘(𝑅𝑦)) Cn (TopOpen‘(𝑅𝑦))))
6940, 68syl 17 . . . . . . 7 ((𝜑𝑦𝐼) → (invg‘(𝑅𝑦)) ∈ ((TopOpen‘(𝑅𝑦)) Cn (TopOpen‘(𝑅𝑦))))
7050, 66, 69cnmpt11f 21467 . . . . . 6 ((𝜑𝑦𝐼) → (𝑥 ∈ (Base‘𝑌) ↦ ((invg‘(𝑅𝑦))‘(𝑥𝑦))) ∈ ((TopOpen‘𝑌) Cn (TopOpen‘(𝑅𝑦))))
7139oveq2d 6666 . . . . . 6 ((𝜑𝑦𝐼) → ((TopOpen‘𝑌) Cn ((TopOpen ∘ 𝑅)‘𝑦)) = ((TopOpen‘𝑌) Cn (TopOpen‘(𝑅𝑦))))
7270, 71eleqtrrd 2704 . . . . 5 ((𝜑𝑦𝐼) → (𝑥 ∈ (Base‘𝑌) ↦ ((invg‘(𝑅𝑦))‘(𝑥𝑦))) ∈ ((TopOpen‘𝑌) Cn ((TopOpen ∘ 𝑅)‘𝑦)))
7327, 30, 2, 49, 72ptcn 21430 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝑌) ↦ (𝑦𝐼 ↦ ((invg‘(𝑅𝑦))‘(𝑥𝑦)))) ∈ ((TopOpen‘𝑌) Cn (∏t‘(TopOpen ∘ 𝑅))))
7426, 73eqeltrd 2701 . . 3 (𝜑 → (invg𝑌) ∈ ((TopOpen‘𝑌) Cn (∏t‘(TopOpen ∘ 𝑅))))
7551oveq2d 6666 . . 3 (𝜑 → ((TopOpen‘𝑌) Cn (TopOpen‘𝑌)) = ((TopOpen‘𝑌) Cn (∏t‘(TopOpen ∘ 𝑅))))
7674, 75eleqtrrd 2704 . 2 (𝜑 → (invg𝑌) ∈ ((TopOpen‘𝑌) Cn (TopOpen‘𝑌)))
7728, 16istgp 21881 . 2 (𝑌 ∈ TopGrp ↔ (𝑌 ∈ Grp ∧ 𝑌 ∈ TopMnd ∧ (invg𝑌) ∈ ((TopOpen‘𝑌) Cn (TopOpen‘𝑌))))
789, 14, 76, 77syl3anbrc 1246 1 (𝜑𝑌 ∈ TopGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  wss 3574   cuni 4436  cmpt 4729  ccom 5118   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  Basecbs 15857  TopOpenctopn 16082  tcpt 16099  Xscprds 16106  Grpcgrp 17422  invgcminusg 17423  Topctop 20698  TopOnctopon 20715   Cn ccn 21028  TopMndctmd 21874  TopGrpctgp 21875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-topgen 16104  df-pt 16105  df-prds 16108  df-plusf 17241  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cn 21031  df-cnp 21032  df-tx 21365  df-tmd 21876  df-tgp 21877
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator