MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgredg Structured version   Visualization version   GIF version

Theorem cusgredg 26320
Description: In a complete simple graph, the edges are all the pairs of different vertices. (Contributed by Alexander van der Vekens, 12-Jan-2018.) (Revised by AV, 1-Nov-2020.)
Hypotheses
Ref Expression
iscusgrvtx.v 𝑉 = (Vtx‘𝐺)
iscusgredg.v 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
cusgredg (𝐺 ∈ ComplUSGraph → 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2})
Distinct variable groups:   𝑥,𝐺   𝑥,𝑉
Allowed substitution hint:   𝐸(𝑥)

Proof of Theorem cusgredg
Dummy variables 𝑣 𝑛 𝑝 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscusgrvtx.v . . 3 𝑉 = (Vtx‘𝐺)
2 iscusgredg.v . . 3 𝐸 = (Edg‘𝐺)
31, 2iscusgredg 26319 . 2 (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸))
4 usgredgss 26054 . . . . 5 (𝐺 ∈ USGraph → (Edg‘𝐺) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (#‘𝑥) = 2})
51pweqi 4162 . . . . . 6 𝒫 𝑉 = 𝒫 (Vtx‘𝐺)
6 rabeq 3192 . . . . . 6 (𝒫 𝑉 = 𝒫 (Vtx‘𝐺) → {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2} = {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (#‘𝑥) = 2})
75, 6ax-mp 5 . . . . 5 {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2} = {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (#‘𝑥) = 2}
84, 2, 73sstr4g 3646 . . . 4 (𝐺 ∈ USGraph → 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2})
98adantr 481 . . 3 ((𝐺 ∈ USGraph ∧ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸) → 𝐸 ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2})
10 elss2prb 13269 . . . . 5 (𝑝 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2} ↔ ∃𝑦𝑉𝑧𝑉 (𝑦𝑧𝑝 = {𝑦, 𝑧}))
11 sneq 4187 . . . . . . . . . . . . . . 15 (𝑣 = 𝑦 → {𝑣} = {𝑦})
1211difeq2d 3728 . . . . . . . . . . . . . 14 (𝑣 = 𝑦 → (𝑉 ∖ {𝑣}) = (𝑉 ∖ {𝑦}))
13 preq2 4269 . . . . . . . . . . . . . . 15 (𝑣 = 𝑦 → {𝑛, 𝑣} = {𝑛, 𝑦})
1413eleq1d 2686 . . . . . . . . . . . . . 14 (𝑣 = 𝑦 → ({𝑛, 𝑣} ∈ 𝐸 ↔ {𝑛, 𝑦} ∈ 𝐸))
1512, 14raleqbidv 3152 . . . . . . . . . . . . 13 (𝑣 = 𝑦 → (∀𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸 ↔ ∀𝑛 ∈ (𝑉 ∖ {𝑦}){𝑛, 𝑦} ∈ 𝐸))
1615rspcv 3305 . . . . . . . . . . . 12 (𝑦𝑉 → (∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸 → ∀𝑛 ∈ (𝑉 ∖ {𝑦}){𝑛, 𝑦} ∈ 𝐸))
1716adantr 481 . . . . . . . . . . 11 ((𝑦𝑉𝑧𝑉) → (∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸 → ∀𝑛 ∈ (𝑉 ∖ {𝑦}){𝑛, 𝑦} ∈ 𝐸))
1817adantr 481 . . . . . . . . . 10 (((𝑦𝑉𝑧𝑉) ∧ (𝑦𝑧𝑝 = {𝑦, 𝑧})) → (∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸 → ∀𝑛 ∈ (𝑉 ∖ {𝑦}){𝑛, 𝑦} ∈ 𝐸))
19 simpr 477 . . . . . . . . . . . . 13 ((𝑦𝑉𝑧𝑉) → 𝑧𝑉)
20 necom 2847 . . . . . . . . . . . . . . 15 (𝑦𝑧𝑧𝑦)
2120biimpi 206 . . . . . . . . . . . . . 14 (𝑦𝑧𝑧𝑦)
2221adantr 481 . . . . . . . . . . . . 13 ((𝑦𝑧𝑝 = {𝑦, 𝑧}) → 𝑧𝑦)
2319, 22anim12i 590 . . . . . . . . . . . 12 (((𝑦𝑉𝑧𝑉) ∧ (𝑦𝑧𝑝 = {𝑦, 𝑧})) → (𝑧𝑉𝑧𝑦))
24 eldifsn 4317 . . . . . . . . . . . 12 (𝑧 ∈ (𝑉 ∖ {𝑦}) ↔ (𝑧𝑉𝑧𝑦))
2523, 24sylibr 224 . . . . . . . . . . 11 (((𝑦𝑉𝑧𝑉) ∧ (𝑦𝑧𝑝 = {𝑦, 𝑧})) → 𝑧 ∈ (𝑉 ∖ {𝑦}))
26 preq1 4268 . . . . . . . . . . . . 13 (𝑛 = 𝑧 → {𝑛, 𝑦} = {𝑧, 𝑦})
2726eleq1d 2686 . . . . . . . . . . . 12 (𝑛 = 𝑧 → ({𝑛, 𝑦} ∈ 𝐸 ↔ {𝑧, 𝑦} ∈ 𝐸))
2827rspcv 3305 . . . . . . . . . . 11 (𝑧 ∈ (𝑉 ∖ {𝑦}) → (∀𝑛 ∈ (𝑉 ∖ {𝑦}){𝑛, 𝑦} ∈ 𝐸 → {𝑧, 𝑦} ∈ 𝐸))
2925, 28syl 17 . . . . . . . . . 10 (((𝑦𝑉𝑧𝑉) ∧ (𝑦𝑧𝑝 = {𝑦, 𝑧})) → (∀𝑛 ∈ (𝑉 ∖ {𝑦}){𝑛, 𝑦} ∈ 𝐸 → {𝑧, 𝑦} ∈ 𝐸))
30 id 22 . . . . . . . . . . . . . . . 16 (𝑝 = {𝑦, 𝑧} → 𝑝 = {𝑦, 𝑧})
31 prcom 4267 . . . . . . . . . . . . . . . 16 {𝑦, 𝑧} = {𝑧, 𝑦}
3230, 31syl6req 2673 . . . . . . . . . . . . . . 15 (𝑝 = {𝑦, 𝑧} → {𝑧, 𝑦} = 𝑝)
3332eleq1d 2686 . . . . . . . . . . . . . 14 (𝑝 = {𝑦, 𝑧} → ({𝑧, 𝑦} ∈ 𝐸𝑝𝐸))
3433biimpd 219 . . . . . . . . . . . . 13 (𝑝 = {𝑦, 𝑧} → ({𝑧, 𝑦} ∈ 𝐸𝑝𝐸))
3534a1d 25 . . . . . . . . . . . 12 (𝑝 = {𝑦, 𝑧} → (𝐺 ∈ USGraph → ({𝑧, 𝑦} ∈ 𝐸𝑝𝐸)))
3635ad2antll 765 . . . . . . . . . . 11 (((𝑦𝑉𝑧𝑉) ∧ (𝑦𝑧𝑝 = {𝑦, 𝑧})) → (𝐺 ∈ USGraph → ({𝑧, 𝑦} ∈ 𝐸𝑝𝐸)))
3736com23 86 . . . . . . . . . 10 (((𝑦𝑉𝑧𝑉) ∧ (𝑦𝑧𝑝 = {𝑦, 𝑧})) → ({𝑧, 𝑦} ∈ 𝐸 → (𝐺 ∈ USGraph → 𝑝𝐸)))
3818, 29, 373syld 60 . . . . . . . . 9 (((𝑦𝑉𝑧𝑉) ∧ (𝑦𝑧𝑝 = {𝑦, 𝑧})) → (∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸 → (𝐺 ∈ USGraph → 𝑝𝐸)))
3938ex 450 . . . . . . . 8 ((𝑦𝑉𝑧𝑉) → ((𝑦𝑧𝑝 = {𝑦, 𝑧}) → (∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸 → (𝐺 ∈ USGraph → 𝑝𝐸))))
4039rexlimivv 3036 . . . . . . 7 (∃𝑦𝑉𝑧𝑉 (𝑦𝑧𝑝 = {𝑦, 𝑧}) → (∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸 → (𝐺 ∈ USGraph → 𝑝𝐸)))
4140com13 88 . . . . . 6 (𝐺 ∈ USGraph → (∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸 → (∃𝑦𝑉𝑧𝑉 (𝑦𝑧𝑝 = {𝑦, 𝑧}) → 𝑝𝐸)))
4241imp 445 . . . . 5 ((𝐺 ∈ USGraph ∧ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸) → (∃𝑦𝑉𝑧𝑉 (𝑦𝑧𝑝 = {𝑦, 𝑧}) → 𝑝𝐸))
4310, 42syl5bi 232 . . . 4 ((𝐺 ∈ USGraph ∧ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸) → (𝑝 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2} → 𝑝𝐸))
4443ssrdv 3609 . . 3 ((𝐺 ∈ USGraph ∧ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸) → {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2} ⊆ 𝐸)
459, 44eqssd 3620 . 2 ((𝐺 ∈ USGraph ∧ ∀𝑣𝑉𝑛 ∈ (𝑉 ∖ {𝑣}){𝑛, 𝑣} ∈ 𝐸) → 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2})
463, 45sylbi 207 1 (𝐺 ∈ ComplUSGraph → 𝐸 = {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  {crab 2916  cdif 3571  wss 3574  𝒫 cpw 4158  {csn 4177  {cpr 4179  cfv 5888  2c2 11070  #chash 13117  Vtxcvtx 25874  Edgcedg 25939   USGraph cusgr 26044  ComplUSGraphccusgr 26227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-edg 25940  df-upgr 25977  df-umgr 25978  df-usgr 26046  df-nbgr 26228  df-uvtxa 26230  df-cplgr 26231  df-cusgr 26232
This theorem is referenced by:  cusgrfilem1  26351
  Copyright terms: Public domain W3C validator