MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ramtlecl Structured version   Visualization version   GIF version

Theorem ramtlecl 15704
Description: The set 𝑇 of numbers with the Ramsey number property is upward-closed. (Contributed by Mario Carneiro, 21-Apr-2015.)
Hypothesis
Ref Expression
ramtlecl.t 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (#‘𝑠) → 𝜑)}
Assertion
Ref Expression
ramtlecl (𝑀𝑇 → (ℤ𝑀) ⊆ 𝑇)
Distinct variable groups:   𝑛,𝑠,𝑀   𝜑,𝑛   𝑇,𝑛,𝑠
Allowed substitution hint:   𝜑(𝑠)

Proof of Theorem ramtlecl
StepHypRef Expression
1 breq1 4656 . . . . . . . 8 (𝑛 = 𝑀 → (𝑛 ≤ (#‘𝑠) ↔ 𝑀 ≤ (#‘𝑠)))
21imbi1d 331 . . . . . . 7 (𝑛 = 𝑀 → ((𝑛 ≤ (#‘𝑠) → 𝜑) ↔ (𝑀 ≤ (#‘𝑠) → 𝜑)))
32albidv 1849 . . . . . 6 (𝑛 = 𝑀 → (∀𝑠(𝑛 ≤ (#‘𝑠) → 𝜑) ↔ ∀𝑠(𝑀 ≤ (#‘𝑠) → 𝜑)))
4 ramtlecl.t . . . . . 6 𝑇 = {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (#‘𝑠) → 𝜑)}
53, 4elrab2 3366 . . . . 5 (𝑀𝑇 ↔ (𝑀 ∈ ℕ0 ∧ ∀𝑠(𝑀 ≤ (#‘𝑠) → 𝜑)))
65simplbi 476 . . . 4 (𝑀𝑇𝑀 ∈ ℕ0)
7 eluznn0 11757 . . . . . 6 ((𝑀 ∈ ℕ0𝑛 ∈ (ℤ𝑀)) → 𝑛 ∈ ℕ0)
87ex 450 . . . . 5 (𝑀 ∈ ℕ0 → (𝑛 ∈ (ℤ𝑀) → 𝑛 ∈ ℕ0))
98ssrdv 3609 . . . 4 (𝑀 ∈ ℕ0 → (ℤ𝑀) ⊆ ℕ0)
106, 9syl 17 . . 3 (𝑀𝑇 → (ℤ𝑀) ⊆ ℕ0)
115simprbi 480 . . . . 5 (𝑀𝑇 → ∀𝑠(𝑀 ≤ (#‘𝑠) → 𝜑))
12 eluzle 11700 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑀) → 𝑀𝑛)
1312adantl 482 . . . . . . . . 9 ((𝑀𝑇𝑛 ∈ (ℤ𝑀)) → 𝑀𝑛)
14 nn0ssre 11296 . . . . . . . . . . . 12 0 ⊆ ℝ
15 ressxr 10083 . . . . . . . . . . . 12 ℝ ⊆ ℝ*
1614, 15sstri 3612 . . . . . . . . . . 11 0 ⊆ ℝ*
176adantr 481 . . . . . . . . . . 11 ((𝑀𝑇𝑛 ∈ (ℤ𝑀)) → 𝑀 ∈ ℕ0)
1816, 17sseldi 3601 . . . . . . . . . 10 ((𝑀𝑇𝑛 ∈ (ℤ𝑀)) → 𝑀 ∈ ℝ*)
196, 7sylan 488 . . . . . . . . . . 11 ((𝑀𝑇𝑛 ∈ (ℤ𝑀)) → 𝑛 ∈ ℕ0)
2016, 19sseldi 3601 . . . . . . . . . 10 ((𝑀𝑇𝑛 ∈ (ℤ𝑀)) → 𝑛 ∈ ℝ*)
21 vex 3203 . . . . . . . . . . 11 𝑠 ∈ V
22 hashxrcl 13148 . . . . . . . . . . 11 (𝑠 ∈ V → (#‘𝑠) ∈ ℝ*)
2321, 22mp1i 13 . . . . . . . . . 10 ((𝑀𝑇𝑛 ∈ (ℤ𝑀)) → (#‘𝑠) ∈ ℝ*)
24 xrletr 11989 . . . . . . . . . 10 ((𝑀 ∈ ℝ*𝑛 ∈ ℝ* ∧ (#‘𝑠) ∈ ℝ*) → ((𝑀𝑛𝑛 ≤ (#‘𝑠)) → 𝑀 ≤ (#‘𝑠)))
2518, 20, 23, 24syl3anc 1326 . . . . . . . . 9 ((𝑀𝑇𝑛 ∈ (ℤ𝑀)) → ((𝑀𝑛𝑛 ≤ (#‘𝑠)) → 𝑀 ≤ (#‘𝑠)))
2613, 25mpand 711 . . . . . . . 8 ((𝑀𝑇𝑛 ∈ (ℤ𝑀)) → (𝑛 ≤ (#‘𝑠) → 𝑀 ≤ (#‘𝑠)))
2726imim1d 82 . . . . . . 7 ((𝑀𝑇𝑛 ∈ (ℤ𝑀)) → ((𝑀 ≤ (#‘𝑠) → 𝜑) → (𝑛 ≤ (#‘𝑠) → 𝜑)))
2827ralrimdva 2969 . . . . . 6 (𝑀𝑇 → ((𝑀 ≤ (#‘𝑠) → 𝜑) → ∀𝑛 ∈ (ℤ𝑀)(𝑛 ≤ (#‘𝑠) → 𝜑)))
2928alimdv 1845 . . . . 5 (𝑀𝑇 → (∀𝑠(𝑀 ≤ (#‘𝑠) → 𝜑) → ∀𝑠𝑛 ∈ (ℤ𝑀)(𝑛 ≤ (#‘𝑠) → 𝜑)))
3011, 29mpd 15 . . . 4 (𝑀𝑇 → ∀𝑠𝑛 ∈ (ℤ𝑀)(𝑛 ≤ (#‘𝑠) → 𝜑))
31 ralcom4 3224 . . . 4 (∀𝑛 ∈ (ℤ𝑀)∀𝑠(𝑛 ≤ (#‘𝑠) → 𝜑) ↔ ∀𝑠𝑛 ∈ (ℤ𝑀)(𝑛 ≤ (#‘𝑠) → 𝜑))
3230, 31sylibr 224 . . 3 (𝑀𝑇 → ∀𝑛 ∈ (ℤ𝑀)∀𝑠(𝑛 ≤ (#‘𝑠) → 𝜑))
33 ssrab 3680 . . 3 ((ℤ𝑀) ⊆ {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (#‘𝑠) → 𝜑)} ↔ ((ℤ𝑀) ⊆ ℕ0 ∧ ∀𝑛 ∈ (ℤ𝑀)∀𝑠(𝑛 ≤ (#‘𝑠) → 𝜑)))
3410, 32, 33sylanbrc 698 . 2 (𝑀𝑇 → (ℤ𝑀) ⊆ {𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (#‘𝑠) → 𝜑)})
3534, 4syl6sseqr 3652 1 (𝑀𝑇 → (ℤ𝑀) ⊆ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wal 1481   = wceq 1483  wcel 1990  wral 2912  {crab 2916  Vcvv 3200  wss 3574   class class class wbr 4653  cfv 5888  cr 9935  *cxr 10073  cle 10075  0cn0 11292  cuz 11687  #chash 13117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-hash 13118
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator