| Step | Hyp | Ref
| Expression |
| 1 | | oveq2 6658 |
. . . . 5
⊢ (𝑥 = 0 → (( I ↾ 𝐴)↑𝑟𝑥) = (( I ↾ 𝐴)↑𝑟0)) |
| 2 | 1 | eqeq1d 2624 |
. . . 4
⊢ (𝑥 = 0 → ((( I ↾ 𝐴)↑𝑟𝑥) = ( I ↾ 𝐴) ↔ (( I ↾ 𝐴)↑𝑟0) =
( I ↾ 𝐴))) |
| 3 | 2 | imbi2d 330 |
. . 3
⊢ (𝑥 = 0 → ((𝐴 ∈ 𝑉 → (( I ↾ 𝐴)↑𝑟𝑥) = ( I ↾ 𝐴)) ↔ (𝐴 ∈ 𝑉 → (( I ↾ 𝐴)↑𝑟0) = ( I ↾
𝐴)))) |
| 4 | | oveq2 6658 |
. . . . 5
⊢ (𝑥 = 𝑦 → (( I ↾ 𝐴)↑𝑟𝑥) = (( I ↾ 𝐴)↑𝑟𝑦)) |
| 5 | 4 | eqeq1d 2624 |
. . . 4
⊢ (𝑥 = 𝑦 → ((( I ↾ 𝐴)↑𝑟𝑥) = ( I ↾ 𝐴) ↔ (( I ↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴))) |
| 6 | 5 | imbi2d 330 |
. . 3
⊢ (𝑥 = 𝑦 → ((𝐴 ∈ 𝑉 → (( I ↾ 𝐴)↑𝑟𝑥) = ( I ↾ 𝐴)) ↔ (𝐴 ∈ 𝑉 → (( I ↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴)))) |
| 7 | | oveq2 6658 |
. . . . 5
⊢ (𝑥 = (𝑦 + 1) → (( I ↾ 𝐴)↑𝑟𝑥) = (( I ↾ 𝐴)↑𝑟(𝑦 + 1))) |
| 8 | 7 | eqeq1d 2624 |
. . . 4
⊢ (𝑥 = (𝑦 + 1) → ((( I ↾ 𝐴)↑𝑟𝑥) = ( I ↾ 𝐴) ↔ (( I ↾ 𝐴)↑𝑟(𝑦 + 1)) = ( I ↾ 𝐴))) |
| 9 | 8 | imbi2d 330 |
. . 3
⊢ (𝑥 = (𝑦 + 1) → ((𝐴 ∈ 𝑉 → (( I ↾ 𝐴)↑𝑟𝑥) = ( I ↾ 𝐴)) ↔ (𝐴 ∈ 𝑉 → (( I ↾ 𝐴)↑𝑟(𝑦 + 1)) = ( I ↾ 𝐴)))) |
| 10 | | oveq2 6658 |
. . . . 5
⊢ (𝑥 = 𝑁 → (( I ↾ 𝐴)↑𝑟𝑥) = (( I ↾ 𝐴)↑𝑟𝑁)) |
| 11 | 10 | eqeq1d 2624 |
. . . 4
⊢ (𝑥 = 𝑁 → ((( I ↾ 𝐴)↑𝑟𝑥) = ( I ↾ 𝐴) ↔ (( I ↾ 𝐴)↑𝑟𝑁) = ( I ↾ 𝐴))) |
| 12 | 11 | imbi2d 330 |
. . 3
⊢ (𝑥 = 𝑁 → ((𝐴 ∈ 𝑉 → (( I ↾ 𝐴)↑𝑟𝑥) = ( I ↾ 𝐴)) ↔ (𝐴 ∈ 𝑉 → (( I ↾ 𝐴)↑𝑟𝑁) = ( I ↾ 𝐴)))) |
| 13 | | resiexg 7102 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ V) |
| 14 | | relexp0g 13762 |
. . . . 5
⊢ (( I
↾ 𝐴) ∈ V →
(( I ↾ 𝐴)↑𝑟0) = ( I ↾
(dom ( I ↾ 𝐴) ∪
ran ( I ↾ 𝐴)))) |
| 15 | 13, 14 | syl 17 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → (( I ↾ 𝐴)↑𝑟0) = ( I ↾
(dom ( I ↾ 𝐴) ∪
ran ( I ↾ 𝐴)))) |
| 16 | | dmresi 5457 |
. . . . . . 7
⊢ dom ( I
↾ 𝐴) = 𝐴 |
| 17 | | rnresi 5479 |
. . . . . . 7
⊢ ran ( I
↾ 𝐴) = 𝐴 |
| 18 | 16, 17 | uneq12i 3765 |
. . . . . 6
⊢ (dom ( I
↾ 𝐴) ∪ ran ( I
↾ 𝐴)) = (𝐴 ∪ 𝐴) |
| 19 | | unidm 3756 |
. . . . . 6
⊢ (𝐴 ∪ 𝐴) = 𝐴 |
| 20 | 18, 19 | eqtri 2644 |
. . . . 5
⊢ (dom ( I
↾ 𝐴) ∪ ran ( I
↾ 𝐴)) = 𝐴 |
| 21 | 20 | reseq2i 5393 |
. . . 4
⊢ ( I
↾ (dom ( I ↾ 𝐴)
∪ ran ( I ↾ 𝐴)))
= ( I ↾ 𝐴) |
| 22 | 15, 21 | syl6eq 2672 |
. . 3
⊢ (𝐴 ∈ 𝑉 → (( I ↾ 𝐴)↑𝑟0) = ( I ↾
𝐴)) |
| 23 | | relres 5426 |
. . . . . . . . . 10
⊢ Rel ( I
↾ 𝐴) |
| 24 | 23 | a1i 11 |
. . . . . . . . 9
⊢ (((( I
↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴) ∧ 𝐴 ∈ 𝑉) → Rel ( I ↾ 𝐴)) |
| 25 | 13 | adantl 482 |
. . . . . . . . 9
⊢ (((( I
↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴) ∧ 𝐴 ∈ 𝑉) → ( I ↾ 𝐴) ∈ V) |
| 26 | 24, 25 | relexpsucrd 13770 |
. . . . . . . 8
⊢ (((( I
↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴) ∧ 𝐴 ∈ 𝑉) → (𝑦 ∈ ℕ0 → (( I
↾ 𝐴)↑𝑟(𝑦 + 1)) = ((( I ↾ 𝐴)↑𝑟𝑦) ∘ ( I ↾ 𝐴)))) |
| 27 | 26 | 3impia 1261 |
. . . . . . 7
⊢ (((( I
↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴) ∧ 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ ℕ0) → (( I
↾ 𝐴)↑𝑟(𝑦 + 1)) = ((( I ↾ 𝐴)↑𝑟𝑦) ∘ ( I ↾ 𝐴))) |
| 28 | | simp1 1061 |
. . . . . . . . 9
⊢ (((( I
↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴) ∧ 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ ℕ0) → (( I
↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴)) |
| 29 | 28 | coeq1d 5283 |
. . . . . . . 8
⊢ (((( I
↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴) ∧ 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ ℕ0) → ((( I
↾ 𝐴)↑𝑟𝑦) ∘ ( I ↾ 𝐴)) = (( I ↾ 𝐴) ∘ ( I ↾ 𝐴))) |
| 30 | | coires1 5653 |
. . . . . . . . 9
⊢ (( I
↾ 𝐴) ∘ ( I
↾ 𝐴)) = (( I ↾
𝐴) ↾ 𝐴) |
| 31 | | residm 5430 |
. . . . . . . . 9
⊢ (( I
↾ 𝐴) ↾ 𝐴) = ( I ↾ 𝐴) |
| 32 | 30, 31 | eqtri 2644 |
. . . . . . . 8
⊢ (( I
↾ 𝐴) ∘ ( I
↾ 𝐴)) = ( I ↾
𝐴) |
| 33 | 29, 32 | syl6eq 2672 |
. . . . . . 7
⊢ (((( I
↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴) ∧ 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ ℕ0) → ((( I
↾ 𝐴)↑𝑟𝑦) ∘ ( I ↾ 𝐴)) = ( I ↾ 𝐴)) |
| 34 | 27, 33 | eqtrd 2656 |
. . . . . 6
⊢ (((( I
↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴) ∧ 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ ℕ0) → (( I
↾ 𝐴)↑𝑟(𝑦 + 1)) = ( I ↾ 𝐴)) |
| 35 | 34 | 3exp 1264 |
. . . . 5
⊢ ((( I
↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴) → (𝐴 ∈ 𝑉 → (𝑦 ∈ ℕ0 → (( I
↾ 𝐴)↑𝑟(𝑦 + 1)) = ( I ↾ 𝐴)))) |
| 36 | 35 | com13 88 |
. . . 4
⊢ (𝑦 ∈ ℕ0
→ (𝐴 ∈ 𝑉 → ((( I ↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴) → (( I ↾ 𝐴)↑𝑟(𝑦 + 1)) = ( I ↾ 𝐴)))) |
| 37 | 36 | a2d 29 |
. . 3
⊢ (𝑦 ∈ ℕ0
→ ((𝐴 ∈ 𝑉 → (( I ↾ 𝐴)↑𝑟𝑦) = ( I ↾ 𝐴)) → (𝐴 ∈ 𝑉 → (( I ↾ 𝐴)↑𝑟(𝑦 + 1)) = ( I ↾ 𝐴)))) |
| 38 | 3, 6, 9, 12, 22, 37 | nn0ind 11472 |
. 2
⊢ (𝑁 ∈ ℕ0
→ (𝐴 ∈ 𝑉 → (( I ↾ 𝐴)↑𝑟𝑁) = ( I ↾ 𝐴))) |
| 39 | 38 | impcom 446 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (( I
↾ 𝐴)↑𝑟𝑁) = ( I ↾ 𝐴)) |