Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relexpmulg Structured version   Visualization version   GIF version

Theorem relexpmulg 38002
Description: With ordered exponents, the composition of powers of a relation is the relation raised to the product of exponents. (Contributed by RP, 13-Jun-2020.)
Assertion
Ref Expression
relexpmulg (((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) ∧ (𝐽 ∈ ℕ0𝐾 ∈ ℕ0)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))

Proof of Theorem relexpmulg
StepHypRef Expression
1 elnn0 11294 . . . 4 (𝐽 ∈ ℕ0 ↔ (𝐽 ∈ ℕ ∨ 𝐽 = 0))
2 elnn0 11294 . . . . . 6 (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℕ ∨ 𝐾 = 0))
3 relexpmulnn 38001 . . . . . . . . . 10 (((𝑅𝑉𝐼 = (𝐽 · 𝐾)) ∧ (𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))
433adantl3 1219 . . . . . . . . 9 (((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) ∧ (𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))
54expcom 451 . . . . . . . 8 ((𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ) → ((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼)))
65expcom 451 . . . . . . 7 (𝐾 ∈ ℕ → (𝐽 ∈ ℕ → ((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))))
7 simprr 796 . . . . . . . . . . . . 13 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾))) → 𝐼 = (𝐽 · 𝐾))
8 simpll 790 . . . . . . . . . . . . . 14 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾))) → 𝐾 = 0)
98oveq2d 6666 . . . . . . . . . . . . 13 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾))) → (𝐽 · 𝐾) = (𝐽 · 0))
10 simplr 792 . . . . . . . . . . . . . . 15 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾))) → 𝐽 ∈ ℕ)
1110nncnd 11036 . . . . . . . . . . . . . 14 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾))) → 𝐽 ∈ ℂ)
1211mul01d 10235 . . . . . . . . . . . . 13 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾))) → (𝐽 · 0) = 0)
137, 9, 123eqtrd 2660 . . . . . . . . . . . 12 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾))) → 𝐼 = 0)
14 simpl 473 . . . . . . . . . . . . 13 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾))) → (𝐾 = 0 ∧ 𝐽 ∈ ℕ))
15 nnnle0 11051 . . . . . . . . . . . . . . 15 (𝐽 ∈ ℕ → ¬ 𝐽 ≤ 0)
1615adantl 482 . . . . . . . . . . . . . 14 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ) → ¬ 𝐽 ≤ 0)
17 simpl 473 . . . . . . . . . . . . . . 15 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ) → 𝐾 = 0)
1817breq2d 4665 . . . . . . . . . . . . . 14 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ) → (𝐽𝐾𝐽 ≤ 0))
1916, 18mtbird 315 . . . . . . . . . . . . 13 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ) → ¬ 𝐽𝐾)
2014, 19syl 17 . . . . . . . . . . . 12 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾))) → ¬ 𝐽𝐾)
21 mth8 158 . . . . . . . . . . . 12 (𝐼 = 0 → (¬ 𝐽𝐾 → ¬ (𝐼 = 0 → 𝐽𝐾)))
2213, 20, 21sylc 65 . . . . . . . . . . 11 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾))) → ¬ (𝐼 = 0 → 𝐽𝐾))
2322pm2.21d 118 . . . . . . . . . 10 (((𝐾 = 0 ∧ 𝐽 ∈ ℕ) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾))) → ((𝐼 = 0 → 𝐽𝐾) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼)))
2423exp32 631 . . . . . . . . 9 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ) → (𝑅𝑉 → (𝐼 = (𝐽 · 𝐾) → ((𝐼 = 0 → 𝐽𝐾) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼)))))
25243impd 1281 . . . . . . . 8 ((𝐾 = 0 ∧ 𝐽 ∈ ℕ) → ((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼)))
2625ex 450 . . . . . . 7 (𝐾 = 0 → (𝐽 ∈ ℕ → ((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))))
276, 26jaoi 394 . . . . . 6 ((𝐾 ∈ ℕ ∨ 𝐾 = 0) → (𝐽 ∈ ℕ → ((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))))
282, 27sylbi 207 . . . . 5 (𝐾 ∈ ℕ0 → (𝐽 ∈ ℕ → ((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))))
29 simplr 792 . . . . . . . . . . 11 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → 𝐽 = 0)
3029oveq2d 6666 . . . . . . . . . 10 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → (𝑅𝑟𝐽) = (𝑅𝑟0))
31 simpr1 1067 . . . . . . . . . . 11 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → 𝑅𝑉)
32 relexp0g 13762 . . . . . . . . . . 11 (𝑅𝑉 → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
3331, 32syl 17 . . . . . . . . . 10 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
3430, 33eqtrd 2656 . . . . . . . . 9 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → (𝑅𝑟𝐽) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
3534oveq1d 6665 . . . . . . . 8 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (( I ↾ (dom 𝑅 ∪ ran 𝑅))↑𝑟𝐾))
36 dmexg 7097 . . . . . . . . . . 11 (𝑅𝑉 → dom 𝑅 ∈ V)
37 rnexg 7098 . . . . . . . . . . 11 (𝑅𝑉 → ran 𝑅 ∈ V)
38 unexg 6959 . . . . . . . . . . 11 ((dom 𝑅 ∈ V ∧ ran 𝑅 ∈ V) → (dom 𝑅 ∪ ran 𝑅) ∈ V)
3936, 37, 38syl2anc 693 . . . . . . . . . 10 (𝑅𝑉 → (dom 𝑅 ∪ ran 𝑅) ∈ V)
4031, 39syl 17 . . . . . . . . 9 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → (dom 𝑅 ∪ ran 𝑅) ∈ V)
41 simpll 790 . . . . . . . . 9 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → 𝐾 ∈ ℕ0)
42 relexpiidm 37996 . . . . . . . . 9 (((dom 𝑅 ∪ ran 𝑅) ∈ V ∧ 𝐾 ∈ ℕ0) → (( I ↾ (dom 𝑅 ∪ ran 𝑅))↑𝑟𝐾) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
4340, 41, 42syl2anc 693 . . . . . . . 8 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → (( I ↾ (dom 𝑅 ∪ ran 𝑅))↑𝑟𝐾) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
44 simpr2 1068 . . . . . . . . . . 11 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → 𝐼 = (𝐽 · 𝐾))
4529oveq1d 6665 . . . . . . . . . . 11 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → (𝐽 · 𝐾) = (0 · 𝐾))
4641nn0cnd 11353 . . . . . . . . . . . 12 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → 𝐾 ∈ ℂ)
4746mul02d 10234 . . . . . . . . . . 11 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → (0 · 𝐾) = 0)
4844, 45, 473eqtrd 2660 . . . . . . . . . 10 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → 𝐼 = 0)
4948oveq2d 6666 . . . . . . . . 9 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → (𝑅𝑟𝐼) = (𝑅𝑟0))
5049, 33eqtr2d 2657 . . . . . . . 8 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = (𝑅𝑟𝐼))
5135, 43, 503eqtrd 2660 . . . . . . 7 (((𝐾 ∈ ℕ0𝐽 = 0) ∧ (𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾))) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))
5251ex 450 . . . . . 6 ((𝐾 ∈ ℕ0𝐽 = 0) → ((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼)))
5352ex 450 . . . . 5 (𝐾 ∈ ℕ0 → (𝐽 = 0 → ((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))))
5428, 53jaod 395 . . . 4 (𝐾 ∈ ℕ0 → ((𝐽 ∈ ℕ ∨ 𝐽 = 0) → ((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))))
551, 54syl5bi 232 . . 3 (𝐾 ∈ ℕ0 → (𝐽 ∈ ℕ0 → ((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))))
5655impcom 446 . 2 ((𝐽 ∈ ℕ0𝐾 ∈ ℕ0) → ((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼)))
5756impcom 446 1 (((𝑅𝑉𝐼 = (𝐽 · 𝐾) ∧ (𝐼 = 0 → 𝐽𝐾)) ∧ (𝐽 ∈ ℕ0𝐾 ∈ ℕ0)) → ((𝑅𝑟𝐽)↑𝑟𝐾) = (𝑅𝑟𝐼))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200  cun 3572   class class class wbr 4653   I cid 5023  dom cdm 5114  ran crn 5115  cres 5116  (class class class)co 6650  0cc0 9936   · cmul 9941  cle 10075  cn 11020  0cn0 11292  𝑟crelexp 13760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-seq 12802  df-relexp 13761
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator