Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relexpiidm Structured version   Visualization version   Unicode version

Theorem relexpiidm 37996
Description: Any power of any restriction of the identity relation is itself. (Contributed by RP, 12-Jun-2020.)
Assertion
Ref Expression
relexpiidm  |-  ( ( A  e.  V  /\  N  e.  NN0 )  -> 
( (  _I  |`  A ) ^r  N )  =  (  _I  |`  A ) )

Proof of Theorem relexpiidm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6658 . . . . 5  |-  ( x  =  0  ->  (
(  _I  |`  A ) ^r  x )  =  ( (  _I  |`  A ) ^r 
0 ) )
21eqeq1d 2624 . . . 4  |-  ( x  =  0  ->  (
( (  _I  |`  A ) ^r  x )  =  (  _I  |`  A )  <-> 
( (  _I  |`  A ) ^r  0 )  =  (  _I  |`  A ) ) )
32imbi2d 330 . . 3  |-  ( x  =  0  ->  (
( A  e.  V  ->  ( (  _I  |`  A ) ^r  x )  =  (  _I  |`  A ) )  <->  ( A  e.  V  ->  ( (  _I  |`  A ) ^r  0 )  =  (  _I  |`  A ) ) ) )
4 oveq2 6658 . . . . 5  |-  ( x  =  y  ->  (
(  _I  |`  A ) ^r  x )  =  ( (  _I  |`  A ) ^r 
y ) )
54eqeq1d 2624 . . . 4  |-  ( x  =  y  ->  (
( (  _I  |`  A ) ^r  x )  =  (  _I  |`  A )  <-> 
( (  _I  |`  A ) ^r  y )  =  (  _I  |`  A ) ) )
65imbi2d 330 . . 3  |-  ( x  =  y  ->  (
( A  e.  V  ->  ( (  _I  |`  A ) ^r  x )  =  (  _I  |`  A ) )  <->  ( A  e.  V  ->  ( (  _I  |`  A ) ^r  y )  =  (  _I  |`  A ) ) ) )
7 oveq2 6658 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  (
(  _I  |`  A ) ^r  x )  =  ( (  _I  |`  A ) ^r 
( y  +  1 ) ) )
87eqeq1d 2624 . . . 4  |-  ( x  =  ( y  +  1 )  ->  (
( (  _I  |`  A ) ^r  x )  =  (  _I  |`  A )  <-> 
( (  _I  |`  A ) ^r  ( y  +  1 ) )  =  (  _I  |`  A ) ) )
98imbi2d 330 . . 3  |-  ( x  =  ( y  +  1 )  ->  (
( A  e.  V  ->  ( (  _I  |`  A ) ^r  x )  =  (  _I  |`  A ) )  <->  ( A  e.  V  ->  ( (  _I  |`  A ) ^r  ( y  +  1 ) )  =  (  _I  |`  A ) ) ) )
10 oveq2 6658 . . . . 5  |-  ( x  =  N  ->  (
(  _I  |`  A ) ^r  x )  =  ( (  _I  |`  A ) ^r  N ) )
1110eqeq1d 2624 . . . 4  |-  ( x  =  N  ->  (
( (  _I  |`  A ) ^r  x )  =  (  _I  |`  A )  <-> 
( (  _I  |`  A ) ^r  N )  =  (  _I  |`  A ) ) )
1211imbi2d 330 . . 3  |-  ( x  =  N  ->  (
( A  e.  V  ->  ( (  _I  |`  A ) ^r  x )  =  (  _I  |`  A ) )  <->  ( A  e.  V  ->  ( (  _I  |`  A ) ^r  N )  =  (  _I  |`  A )
) ) )
13 resiexg 7102 . . . . 5  |-  ( A  e.  V  ->  (  _I  |`  A )  e. 
_V )
14 relexp0g 13762 . . . . 5  |-  ( (  _I  |`  A )  e.  _V  ->  ( (  _I  |`  A ) ^r  0 )  =  (  _I  |`  ( dom  (  _I  |`  A )  u.  ran  (  _I  |`  A ) ) ) )
1513, 14syl 17 . . . 4  |-  ( A  e.  V  ->  (
(  _I  |`  A ) ^r  0 )  =  (  _I  |`  ( dom  (  _I  |`  A )  u.  ran  (  _I  |`  A ) ) ) )
16 dmresi 5457 . . . . . . 7  |-  dom  (  _I  |`  A )  =  A
17 rnresi 5479 . . . . . . 7  |-  ran  (  _I  |`  A )  =  A
1816, 17uneq12i 3765 . . . . . 6  |-  ( dom  (  _I  |`  A )  u.  ran  (  _I  |`  A ) )  =  ( A  u.  A
)
19 unidm 3756 . . . . . 6  |-  ( A  u.  A )  =  A
2018, 19eqtri 2644 . . . . 5  |-  ( dom  (  _I  |`  A )  u.  ran  (  _I  |`  A ) )  =  A
2120reseq2i 5393 . . . 4  |-  (  _I  |`  ( dom  (  _I  |`  A )  u.  ran  (  _I  |`  A ) ) )  =  (  _I  |`  A )
2215, 21syl6eq 2672 . . 3  |-  ( A  e.  V  ->  (
(  _I  |`  A ) ^r  0 )  =  (  _I  |`  A ) )
23 relres 5426 . . . . . . . . . 10  |-  Rel  (  _I  |`  A )
2423a1i 11 . . . . . . . . 9  |-  ( ( ( (  _I  |`  A ) ^r  y )  =  (  _I  |`  A )  /\  A  e.  V
)  ->  Rel  (  _I  |`  A ) )
2513adantl 482 . . . . . . . . 9  |-  ( ( ( (  _I  |`  A ) ^r  y )  =  (  _I  |`  A )  /\  A  e.  V
)  ->  (  _I  |`  A )  e.  _V )
2624, 25relexpsucrd 13770 . . . . . . . 8  |-  ( ( ( (  _I  |`  A ) ^r  y )  =  (  _I  |`  A )  /\  A  e.  V
)  ->  ( y  e.  NN0  ->  ( (  _I  |`  A ) ^r  ( y  +  1 ) )  =  ( ( (  _I  |`  A ) ^r 
y )  o.  (  _I  |`  A ) ) ) )
27263impia 1261 . . . . . . 7  |-  ( ( ( (  _I  |`  A ) ^r  y )  =  (  _I  |`  A )  /\  A  e.  V  /\  y  e.  NN0 )  ->  ( (  _I  |`  A ) ^r 
( y  +  1 ) )  =  ( ( (  _I  |`  A ) ^r  y )  o.  (  _I  |`  A ) ) )
28 simp1 1061 . . . . . . . . 9  |-  ( ( ( (  _I  |`  A ) ^r  y )  =  (  _I  |`  A )  /\  A  e.  V  /\  y  e.  NN0 )  ->  ( (  _I  |`  A ) ^r 
y )  =  (  _I  |`  A )
)
2928coeq1d 5283 . . . . . . . 8  |-  ( ( ( (  _I  |`  A ) ^r  y )  =  (  _I  |`  A )  /\  A  e.  V  /\  y  e.  NN0 )  ->  ( ( (  _I  |`  A ) ^r  y )  o.  (  _I  |`  A ) )  =  ( (  _I  |`  A )  o.  (  _I  |`  A ) ) )
30 coires1 5653 . . . . . . . . 9  |-  ( (  _I  |`  A )  o.  (  _I  |`  A ) )  =  ( (  _I  |`  A )  |`  A )
31 residm 5430 . . . . . . . . 9  |-  ( (  _I  |`  A )  |`  A )  =  (  _I  |`  A )
3230, 31eqtri 2644 . . . . . . . 8  |-  ( (  _I  |`  A )  o.  (  _I  |`  A ) )  =  (  _I  |`  A )
3329, 32syl6eq 2672 . . . . . . 7  |-  ( ( ( (  _I  |`  A ) ^r  y )  =  (  _I  |`  A )  /\  A  e.  V  /\  y  e.  NN0 )  ->  ( ( (  _I  |`  A ) ^r  y )  o.  (  _I  |`  A ) )  =  (  _I  |`  A ) )
3427, 33eqtrd 2656 . . . . . 6  |-  ( ( ( (  _I  |`  A ) ^r  y )  =  (  _I  |`  A )  /\  A  e.  V  /\  y  e.  NN0 )  ->  ( (  _I  |`  A ) ^r 
( y  +  1 ) )  =  (  _I  |`  A )
)
35343exp 1264 . . . . 5  |-  ( ( (  _I  |`  A ) ^r  y )  =  (  _I  |`  A )  ->  ( A  e.  V  ->  ( y  e.  NN0  ->  ( (  _I  |`  A ) ^r  ( y  +  1 ) )  =  (  _I  |`  A ) ) ) )
3635com13 88 . . . 4  |-  ( y  e.  NN0  ->  ( A  e.  V  ->  (
( (  _I  |`  A ) ^r  y )  =  (  _I  |`  A )  ->  ( (  _I  |`  A ) ^r 
( y  +  1 ) )  =  (  _I  |`  A )
) ) )
3736a2d 29 . . 3  |-  ( y  e.  NN0  ->  ( ( A  e.  V  -> 
( (  _I  |`  A ) ^r  y )  =  (  _I  |`  A ) )  ->  ( A  e.  V  ->  ( (  _I  |`  A ) ^r  ( y  +  1 ) )  =  (  _I  |`  A ) ) ) )
383, 6, 9, 12, 22, 37nn0ind 11472 . 2  |-  ( N  e.  NN0  ->  ( A  e.  V  ->  (
(  _I  |`  A ) ^r  N )  =  (  _I  |`  A ) ) )
3938impcom 446 1  |-  ( ( A  e.  V  /\  N  e.  NN0 )  -> 
( (  _I  |`  A ) ^r  N )  =  (  _I  |`  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200    u. cun 3572    _I cid 5023   dom cdm 5114   ran crn 5115    |` cres 5116    o. ccom 5118   Rel wrel 5119  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939   NN0cn0 11292   ^r crelexp 13760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-seq 12802  df-relexp 13761
This theorem is referenced by:  relexpmulg  38002  relexpxpmin  38009
  Copyright terms: Public domain W3C validator