| Step | Hyp | Ref
| Expression |
| 1 | | simpr 477 |
. . . 4
⊢ ((𝜂 ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈
ℕ0) |
| 2 | | eleq1 2689 |
. . . . . . 7
⊢ (𝑘 = 0 → (𝑘 ∈ ℕ0 ↔ 0 ∈
ℕ0)) |
| 3 | 2 | anbi2d 740 |
. . . . . 6
⊢ (𝑘 = 0 → ((𝜂 ∧ 𝑘 ∈ ℕ0) ↔ (𝜂 ∧ 0 ∈
ℕ0))) |
| 4 | | oveq2 6658 |
. . . . . . . . 9
⊢ (𝑘 = 0 → (𝑅↑𝑟𝑘) = (𝑅↑𝑟0)) |
| 5 | 4 | breqd 4664 |
. . . . . . . 8
⊢ (𝑘 = 0 → (𝑆(𝑅↑𝑟𝑘)𝑥 ↔ 𝑆(𝑅↑𝑟0)𝑥)) |
| 6 | 5 | imbi1d 331 |
. . . . . . 7
⊢ (𝑘 = 0 → ((𝑆(𝑅↑𝑟𝑘)𝑥 → 𝜓) ↔ (𝑆(𝑅↑𝑟0)𝑥 → 𝜓))) |
| 7 | 6 | albidv 1849 |
. . . . . 6
⊢ (𝑘 = 0 → (∀𝑥(𝑆(𝑅↑𝑟𝑘)𝑥 → 𝜓) ↔ ∀𝑥(𝑆(𝑅↑𝑟0)𝑥 → 𝜓))) |
| 8 | 3, 7 | imbi12d 334 |
. . . . 5
⊢ (𝑘 = 0 → (((𝜂 ∧ 𝑘 ∈ ℕ0) →
∀𝑥(𝑆(𝑅↑𝑟𝑘)𝑥 → 𝜓)) ↔ ((𝜂 ∧ 0 ∈ ℕ0) →
∀𝑥(𝑆(𝑅↑𝑟0)𝑥 → 𝜓)))) |
| 9 | | eleq1 2689 |
. . . . . . 7
⊢ (𝑘 = 𝑙 → (𝑘 ∈ ℕ0 ↔ 𝑙 ∈
ℕ0)) |
| 10 | 9 | anbi2d 740 |
. . . . . 6
⊢ (𝑘 = 𝑙 → ((𝜂 ∧ 𝑘 ∈ ℕ0) ↔ (𝜂 ∧ 𝑙 ∈
ℕ0))) |
| 11 | | oveq2 6658 |
. . . . . . . . 9
⊢ (𝑘 = 𝑙 → (𝑅↑𝑟𝑘) = (𝑅↑𝑟𝑙)) |
| 12 | 11 | breqd 4664 |
. . . . . . . 8
⊢ (𝑘 = 𝑙 → (𝑆(𝑅↑𝑟𝑘)𝑥 ↔ 𝑆(𝑅↑𝑟𝑙)𝑥)) |
| 13 | 12 | imbi1d 331 |
. . . . . . 7
⊢ (𝑘 = 𝑙 → ((𝑆(𝑅↑𝑟𝑘)𝑥 → 𝜓) ↔ (𝑆(𝑅↑𝑟𝑙)𝑥 → 𝜓))) |
| 14 | 13 | albidv 1849 |
. . . . . 6
⊢ (𝑘 = 𝑙 → (∀𝑥(𝑆(𝑅↑𝑟𝑘)𝑥 → 𝜓) ↔ ∀𝑥(𝑆(𝑅↑𝑟𝑙)𝑥 → 𝜓))) |
| 15 | 10, 14 | imbi12d 334 |
. . . . 5
⊢ (𝑘 = 𝑙 → (((𝜂 ∧ 𝑘 ∈ ℕ0) →
∀𝑥(𝑆(𝑅↑𝑟𝑘)𝑥 → 𝜓)) ↔ ((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑥(𝑆(𝑅↑𝑟𝑙)𝑥 → 𝜓)))) |
| 16 | | eleq1 2689 |
. . . . . . 7
⊢ (𝑘 = (𝑙 + 1) → (𝑘 ∈ ℕ0 ↔ (𝑙 + 1) ∈
ℕ0)) |
| 17 | 16 | anbi2d 740 |
. . . . . 6
⊢ (𝑘 = (𝑙 + 1) → ((𝜂 ∧ 𝑘 ∈ ℕ0) ↔ (𝜂 ∧ (𝑙 + 1) ∈
ℕ0))) |
| 18 | | oveq2 6658 |
. . . . . . . . 9
⊢ (𝑘 = (𝑙 + 1) → (𝑅↑𝑟𝑘) = (𝑅↑𝑟(𝑙 + 1))) |
| 19 | 18 | breqd 4664 |
. . . . . . . 8
⊢ (𝑘 = (𝑙 + 1) → (𝑆(𝑅↑𝑟𝑘)𝑥 ↔ 𝑆(𝑅↑𝑟(𝑙 + 1))𝑥)) |
| 20 | 19 | imbi1d 331 |
. . . . . . 7
⊢ (𝑘 = (𝑙 + 1) → ((𝑆(𝑅↑𝑟𝑘)𝑥 → 𝜓) ↔ (𝑆(𝑅↑𝑟(𝑙 + 1))𝑥 → 𝜓))) |
| 21 | 20 | albidv 1849 |
. . . . . 6
⊢ (𝑘 = (𝑙 + 1) → (∀𝑥(𝑆(𝑅↑𝑟𝑘)𝑥 → 𝜓) ↔ ∀𝑥(𝑆(𝑅↑𝑟(𝑙 + 1))𝑥 → 𝜓))) |
| 22 | 17, 21 | imbi12d 334 |
. . . . 5
⊢ (𝑘 = (𝑙 + 1) → (((𝜂 ∧ 𝑘 ∈ ℕ0) →
∀𝑥(𝑆(𝑅↑𝑟𝑘)𝑥 → 𝜓)) ↔ ((𝜂 ∧ (𝑙 + 1) ∈ ℕ0) →
∀𝑥(𝑆(𝑅↑𝑟(𝑙 + 1))𝑥 → 𝜓)))) |
| 23 | | eleq1 2689 |
. . . . . . 7
⊢ (𝑘 = 𝑛 → (𝑘 ∈ ℕ0 ↔ 𝑛 ∈
ℕ0)) |
| 24 | 23 | anbi2d 740 |
. . . . . 6
⊢ (𝑘 = 𝑛 → ((𝜂 ∧ 𝑘 ∈ ℕ0) ↔ (𝜂 ∧ 𝑛 ∈
ℕ0))) |
| 25 | | oveq2 6658 |
. . . . . . . . 9
⊢ (𝑘 = 𝑛 → (𝑅↑𝑟𝑘) = (𝑅↑𝑟𝑛)) |
| 26 | 25 | breqd 4664 |
. . . . . . . 8
⊢ (𝑘 = 𝑛 → (𝑆(𝑅↑𝑟𝑘)𝑥 ↔ 𝑆(𝑅↑𝑟𝑛)𝑥)) |
| 27 | 26 | imbi1d 331 |
. . . . . . 7
⊢ (𝑘 = 𝑛 → ((𝑆(𝑅↑𝑟𝑘)𝑥 → 𝜓) ↔ (𝑆(𝑅↑𝑟𝑛)𝑥 → 𝜓))) |
| 28 | 27 | albidv 1849 |
. . . . . 6
⊢ (𝑘 = 𝑛 → (∀𝑥(𝑆(𝑅↑𝑟𝑘)𝑥 → 𝜓) ↔ ∀𝑥(𝑆(𝑅↑𝑟𝑛)𝑥 → 𝜓))) |
| 29 | 24, 28 | imbi12d 334 |
. . . . 5
⊢ (𝑘 = 𝑛 → (((𝜂 ∧ 𝑘 ∈ ℕ0) →
∀𝑥(𝑆(𝑅↑𝑟𝑘)𝑥 → 𝜓)) ↔ ((𝜂 ∧ 𝑛 ∈ ℕ0) →
∀𝑥(𝑆(𝑅↑𝑟𝑛)𝑥 → 𝜓)))) |
| 30 | | relexpindlem.2 |
. . . . . . . . . 10
⊢ (𝜂 → 𝑅 ∈ V) |
| 31 | | relexpindlem.1 |
. . . . . . . . . 10
⊢ (𝜂 → Rel 𝑅) |
| 32 | 30, 31 | jca 554 |
. . . . . . . . 9
⊢ (𝜂 → (𝑅 ∈ V ∧ Rel 𝑅)) |
| 33 | 32 | adantr 481 |
. . . . . . . 8
⊢ ((𝜂 ∧ 0 ∈
ℕ0) → (𝑅 ∈ V ∧ Rel 𝑅)) |
| 34 | | relexp0 13763 |
. . . . . . . 8
⊢ ((𝑅 ∈ V ∧ Rel 𝑅) → (𝑅↑𝑟0) = ( I ↾
∪ ∪ 𝑅)) |
| 35 | 33, 34 | syl 17 |
. . . . . . 7
⊢ ((𝜂 ∧ 0 ∈
ℕ0) → (𝑅↑𝑟0) = ( I ↾
∪ ∪ 𝑅)) |
| 36 | | relexpindlem.7 |
. . . . . . . . . . 11
⊢ (𝜂 → 𝜒) |
| 37 | 36 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜂 ∧ 0 ∈
ℕ0) → 𝜒) |
| 38 | | simpl 473 |
. . . . . . . . . 10
⊢ ((𝜂 ∧ 0 ∈
ℕ0) → 𝜂) |
| 39 | | relexpindlem.3 |
. . . . . . . . . . . 12
⊢ (𝜂 → 𝑆 ∈ V) |
| 40 | 39 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜒 ∧ 𝜂) → 𝑆 ∈ V) |
| 41 | | simprl 794 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 = 𝑆 ∧ (𝜂 ∧ (𝜑 ∧ 𝑖 = 𝑆))) → 𝜂) |
| 42 | 41, 36 | jccil 563 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 = 𝑆 ∧ (𝜂 ∧ (𝜑 ∧ 𝑖 = 𝑆))) → (𝜒 ∧ 𝜂)) |
| 43 | 42 | expcom 451 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜂 ∧ (𝜑 ∧ 𝑖 = 𝑆)) → (𝑖 = 𝑆 → (𝜒 ∧ 𝜂))) |
| 44 | 43 | expcom 451 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 = 𝑆) → (𝜂 → (𝑖 = 𝑆 → (𝜒 ∧ 𝜂)))) |
| 45 | 44 | expcom 451 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝑆 → (𝜑 → (𝜂 → (𝑖 = 𝑆 → (𝜒 ∧ 𝜂))))) |
| 46 | 45 | 3imp1 1280 |
. . . . . . . . . . . . . 14
⊢ (((𝑖 = 𝑆 ∧ 𝜑 ∧ 𝜂) ∧ 𝑖 = 𝑆) → (𝜒 ∧ 𝜂)) |
| 47 | 46 | expcom 451 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑆 → ((𝑖 = 𝑆 ∧ 𝜑 ∧ 𝜂) → (𝜒 ∧ 𝜂))) |
| 48 | | simpr 477 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜂 ∧ 𝑖 = 𝑆) → 𝑖 = 𝑆) |
| 49 | 48 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜒 ∧ (𝜂 ∧ 𝑖 = 𝑆)) → 𝑖 = 𝑆) |
| 50 | | relexpindlem.4 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 = 𝑆 → (𝜑 ↔ 𝜒)) |
| 51 | 50 | ad2antll 765 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜒 ∧ (𝜂 ∧ 𝑖 = 𝑆)) → (𝜑 ↔ 𝜒)) |
| 52 | 51 | bicomd 213 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜒 ∧ (𝜂 ∧ 𝑖 = 𝑆)) → (𝜒 ↔ 𝜑)) |
| 53 | | anbi1 743 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜒 ↔ 𝜑) → ((𝜒 ∧ (𝜂 ∧ 𝑖 = 𝑆)) ↔ (𝜑 ∧ (𝜂 ∧ 𝑖 = 𝑆)))) |
| 54 | | simpl 473 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝜂 ∧ 𝑖 = 𝑆)) → 𝜑) |
| 55 | 53, 54 | syl6bi 243 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜒 ↔ 𝜑) → ((𝜒 ∧ (𝜂 ∧ 𝑖 = 𝑆)) → 𝜑)) |
| 56 | 52, 55 | mpcom 38 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜒 ∧ (𝜂 ∧ 𝑖 = 𝑆)) → 𝜑) |
| 57 | | simprl 794 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜒 ∧ (𝜂 ∧ 𝑖 = 𝑆)) → 𝜂) |
| 58 | 49, 56, 57 | 3jca 1242 |
. . . . . . . . . . . . . . 15
⊢ ((𝜒 ∧ (𝜂 ∧ 𝑖 = 𝑆)) → (𝑖 = 𝑆 ∧ 𝜑 ∧ 𝜂)) |
| 59 | 58 | anassrs 680 |
. . . . . . . . . . . . . 14
⊢ (((𝜒 ∧ 𝜂) ∧ 𝑖 = 𝑆) → (𝑖 = 𝑆 ∧ 𝜑 ∧ 𝜂)) |
| 60 | 59 | expcom 451 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑆 → ((𝜒 ∧ 𝜂) → (𝑖 = 𝑆 ∧ 𝜑 ∧ 𝜂))) |
| 61 | 47, 60 | impbid 202 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑆 → ((𝑖 = 𝑆 ∧ 𝜑 ∧ 𝜂) ↔ (𝜒 ∧ 𝜂))) |
| 62 | 61 | spcegv 3294 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ V → ((𝜒 ∧ 𝜂) → ∃𝑖(𝑖 = 𝑆 ∧ 𝜑 ∧ 𝜂))) |
| 63 | 40, 62 | mpcom 38 |
. . . . . . . . . 10
⊢ ((𝜒 ∧ 𝜂) → ∃𝑖(𝑖 = 𝑆 ∧ 𝜑 ∧ 𝜂)) |
| 64 | 37, 38, 63 | syl2anc 693 |
. . . . . . . . 9
⊢ ((𝜂 ∧ 0 ∈
ℕ0) → ∃𝑖(𝑖 = 𝑆 ∧ 𝜑 ∧ 𝜂)) |
| 65 | | simpl 473 |
. . . . . . . . . . . . . 14
⊢ ((𝑆( I ↾ ∪ ∪ 𝑅)𝑥 ∧ (∃𝑖(𝑖 = 𝑆 ∧ 𝜑 ∧ 𝜂) ∧ (𝜂 ∧ 0 ∈ ℕ0)))
→ 𝑆( I ↾ ∪ ∪ 𝑅)𝑥) |
| 66 | | df-br 4654 |
. . . . . . . . . . . . . 14
⊢ (𝑆( I ↾ ∪ ∪ 𝑅)𝑥 ↔ 〈𝑆, 𝑥〉 ∈ ( I ↾ ∪ ∪ 𝑅)) |
| 67 | 65, 66 | sylib 208 |
. . . . . . . . . . . . 13
⊢ ((𝑆( I ↾ ∪ ∪ 𝑅)𝑥 ∧ (∃𝑖(𝑖 = 𝑆 ∧ 𝜑 ∧ 𝜂) ∧ (𝜂 ∧ 0 ∈ ℕ0)))
→ 〈𝑆, 𝑥〉 ∈ ( I ↾ ∪ ∪ 𝑅)) |
| 68 | | vex 3203 |
. . . . . . . . . . . . . 14
⊢ 𝑥 ∈ V |
| 69 | 68 | opelres 5401 |
. . . . . . . . . . . . 13
⊢
(〈𝑆, 𝑥〉 ∈ ( I ↾ ∪ ∪ 𝑅) ↔ (〈𝑆, 𝑥〉 ∈ I ∧ 𝑆 ∈ ∪ ∪ 𝑅)) |
| 70 | 67, 69 | sylib 208 |
. . . . . . . . . . . 12
⊢ ((𝑆( I ↾ ∪ ∪ 𝑅)𝑥 ∧ (∃𝑖(𝑖 = 𝑆 ∧ 𝜑 ∧ 𝜂) ∧ (𝜂 ∧ 0 ∈ ℕ0)))
→ (〈𝑆, 𝑥〉 ∈ I ∧ 𝑆 ∈ ∪ ∪ 𝑅)) |
| 71 | | simpll 790 |
. . . . . . . . . . . . . 14
⊢
(((〈𝑆, 𝑥〉 ∈ I ∧ 𝑆 ∈ ∪ ∪ 𝑅) ∧ (𝑆( I ↾ ∪
∪ 𝑅)𝑥 ∧ (∃𝑖(𝑖 = 𝑆 ∧ 𝜑 ∧ 𝜂) ∧ (𝜂 ∧ 0 ∈ ℕ0))))
→ 〈𝑆, 𝑥〉 ∈ I
) |
| 72 | | df-br 4654 |
. . . . . . . . . . . . . 14
⊢ (𝑆 I 𝑥 ↔ 〈𝑆, 𝑥〉 ∈ I ) |
| 73 | 71, 72 | sylibr 224 |
. . . . . . . . . . . . 13
⊢
(((〈𝑆, 𝑥〉 ∈ I ∧ 𝑆 ∈ ∪ ∪ 𝑅) ∧ (𝑆( I ↾ ∪
∪ 𝑅)𝑥 ∧ (∃𝑖(𝑖 = 𝑆 ∧ 𝜑 ∧ 𝜂) ∧ (𝜂 ∧ 0 ∈ ℕ0))))
→ 𝑆 I 𝑥) |
| 74 | 68 | ideq 5274 |
. . . . . . . . . . . . 13
⊢ (𝑆 I 𝑥 ↔ 𝑆 = 𝑥) |
| 75 | 73, 74 | sylib 208 |
. . . . . . . . . . . 12
⊢
(((〈𝑆, 𝑥〉 ∈ I ∧ 𝑆 ∈ ∪ ∪ 𝑅) ∧ (𝑆( I ↾ ∪
∪ 𝑅)𝑥 ∧ (∃𝑖(𝑖 = 𝑆 ∧ 𝜑 ∧ 𝜂) ∧ (𝜂 ∧ 0 ∈ ℕ0))))
→ 𝑆 = 𝑥) |
| 76 | 70, 75 | mpancom 703 |
. . . . . . . . . . 11
⊢ ((𝑆( I ↾ ∪ ∪ 𝑅)𝑥 ∧ (∃𝑖(𝑖 = 𝑆 ∧ 𝜑 ∧ 𝜂) ∧ (𝜂 ∧ 0 ∈ ℕ0)))
→ 𝑆 = 𝑥) |
| 77 | | breq1 4656 |
. . . . . . . . . . . . 13
⊢ (𝑆 = 𝑥 → (𝑆( I ↾ ∪
∪ 𝑅)𝑥 ↔ 𝑥( I ↾ ∪
∪ 𝑅)𝑥)) |
| 78 | | eqeq2 2633 |
. . . . . . . . . . . . . . . 16
⊢ (𝑆 = 𝑥 → (𝑖 = 𝑆 ↔ 𝑖 = 𝑥)) |
| 79 | 78 | 3anbi1d 1403 |
. . . . . . . . . . . . . . 15
⊢ (𝑆 = 𝑥 → ((𝑖 = 𝑆 ∧ 𝜑 ∧ 𝜂) ↔ (𝑖 = 𝑥 ∧ 𝜑 ∧ 𝜂))) |
| 80 | 79 | exbidv 1850 |
. . . . . . . . . . . . . 14
⊢ (𝑆 = 𝑥 → (∃𝑖(𝑖 = 𝑆 ∧ 𝜑 ∧ 𝜂) ↔ ∃𝑖(𝑖 = 𝑥 ∧ 𝜑 ∧ 𝜂))) |
| 81 | 80 | anbi1d 741 |
. . . . . . . . . . . . 13
⊢ (𝑆 = 𝑥 → ((∃𝑖(𝑖 = 𝑆 ∧ 𝜑 ∧ 𝜂) ∧ (𝜂 ∧ 0 ∈ ℕ0)) ↔
(∃𝑖(𝑖 = 𝑥 ∧ 𝜑 ∧ 𝜂) ∧ (𝜂 ∧ 0 ∈
ℕ0)))) |
| 82 | 77, 81 | anbi12d 747 |
. . . . . . . . . . . 12
⊢ (𝑆 = 𝑥 → ((𝑆( I ↾ ∪
∪ 𝑅)𝑥 ∧ (∃𝑖(𝑖 = 𝑆 ∧ 𝜑 ∧ 𝜂) ∧ (𝜂 ∧ 0 ∈ ℕ0)))
↔ (𝑥( I ↾ ∪ ∪ 𝑅)𝑥 ∧ (∃𝑖(𝑖 = 𝑥 ∧ 𝜑 ∧ 𝜂) ∧ (𝜂 ∧ 0 ∈
ℕ0))))) |
| 83 | | simprl 794 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜂 ∧ (𝜑 ∧ 𝑖 = 𝑥)) → 𝜑) |
| 84 | | relexpindlem.5 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 = 𝑥 → (𝜑 ↔ 𝜓)) |
| 85 | 84 | ad2antll 765 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜂 ∧ (𝜑 ∧ 𝑖 = 𝑥)) → (𝜑 ↔ 𝜓)) |
| 86 | 83, 85 | mpbid 222 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜂 ∧ (𝜑 ∧ 𝑖 = 𝑥)) → 𝜓) |
| 87 | 86 | expcom 451 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 = 𝑥) → (𝜂 → 𝜓)) |
| 88 | 87 | expcom 451 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝑥 → (𝜑 → (𝜂 → 𝜓))) |
| 89 | 88 | 3imp 1256 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 = 𝑥 ∧ 𝜑 ∧ 𝜂) → 𝜓) |
| 90 | 89 | exlimiv 1858 |
. . . . . . . . . . . . 13
⊢
(∃𝑖(𝑖 = 𝑥 ∧ 𝜑 ∧ 𝜂) → 𝜓) |
| 91 | 90 | ad2antrl 764 |
. . . . . . . . . . . 12
⊢ ((𝑥( I ↾ ∪ ∪ 𝑅)𝑥 ∧ (∃𝑖(𝑖 = 𝑥 ∧ 𝜑 ∧ 𝜂) ∧ (𝜂 ∧ 0 ∈ ℕ0)))
→ 𝜓) |
| 92 | 82, 91 | syl6bi 243 |
. . . . . . . . . . 11
⊢ (𝑆 = 𝑥 → ((𝑆( I ↾ ∪
∪ 𝑅)𝑥 ∧ (∃𝑖(𝑖 = 𝑆 ∧ 𝜑 ∧ 𝜂) ∧ (𝜂 ∧ 0 ∈ ℕ0)))
→ 𝜓)) |
| 93 | 76, 92 | mpcom 38 |
. . . . . . . . . 10
⊢ ((𝑆( I ↾ ∪ ∪ 𝑅)𝑥 ∧ (∃𝑖(𝑖 = 𝑆 ∧ 𝜑 ∧ 𝜂) ∧ (𝜂 ∧ 0 ∈ ℕ0)))
→ 𝜓) |
| 94 | 93 | expcom 451 |
. . . . . . . . 9
⊢
((∃𝑖(𝑖 = 𝑆 ∧ 𝜑 ∧ 𝜂) ∧ (𝜂 ∧ 0 ∈ ℕ0)) →
(𝑆( I ↾ ∪ ∪ 𝑅)𝑥 → 𝜓)) |
| 95 | 64, 94 | mpancom 703 |
. . . . . . . 8
⊢ ((𝜂 ∧ 0 ∈
ℕ0) → (𝑆( I ↾ ∪
∪ 𝑅)𝑥 → 𝜓)) |
| 96 | | breq 4655 |
. . . . . . . . 9
⊢ ((𝑅↑𝑟0) = (
I ↾ ∪ ∪ 𝑅) → (𝑆(𝑅↑𝑟0)𝑥 ↔ 𝑆( I ↾ ∪
∪ 𝑅)𝑥)) |
| 97 | 96 | imbi1d 331 |
. . . . . . . 8
⊢ ((𝑅↑𝑟0) = (
I ↾ ∪ ∪ 𝑅) → ((𝑆(𝑅↑𝑟0)𝑥 → 𝜓) ↔ (𝑆( I ↾ ∪
∪ 𝑅)𝑥 → 𝜓))) |
| 98 | 95, 97 | syl5ibr 236 |
. . . . . . 7
⊢ ((𝑅↑𝑟0) = (
I ↾ ∪ ∪ 𝑅) → ((𝜂 ∧ 0 ∈ ℕ0) →
(𝑆(𝑅↑𝑟0)𝑥 → 𝜓))) |
| 99 | 35, 98 | mpcom 38 |
. . . . . 6
⊢ ((𝜂 ∧ 0 ∈
ℕ0) → (𝑆(𝑅↑𝑟0)𝑥 → 𝜓)) |
| 100 | 99 | alrimiv 1855 |
. . . . 5
⊢ ((𝜂 ∧ 0 ∈
ℕ0) → ∀𝑥(𝑆(𝑅↑𝑟0)𝑥 → 𝜓)) |
| 101 | | breq2 4657 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑥 → (𝑆(𝑅↑𝑟𝑙)𝑖 ↔ 𝑆(𝑅↑𝑟𝑙)𝑥)) |
| 102 | 101, 84 | imbi12d 334 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑥 → ((𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑) ↔ (𝑆(𝑅↑𝑟𝑙)𝑥 → 𝜓))) |
| 103 | 102 | cbvalv 2273 |
. . . . . . . . . 10
⊢
(∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑) ↔ ∀𝑥(𝑆(𝑅↑𝑟𝑙)𝑥 → 𝜓)) |
| 104 | 103 | bicomi 214 |
. . . . . . . . 9
⊢
(∀𝑥(𝑆(𝑅↑𝑟𝑙)𝑥 → 𝜓) ↔ ∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) |
| 105 | | imbi2 338 |
. . . . . . . . . . . . 13
⊢
((∀𝑥(𝑆(𝑅↑𝑟𝑙)𝑥 → 𝜓) ↔ ∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) → (((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑥(𝑆(𝑅↑𝑟𝑙)𝑥 → 𝜓)) ↔ ((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)))) |
| 106 | 105 | anbi1d 741 |
. . . . . . . . . . . 12
⊢
((∀𝑥(𝑆(𝑅↑𝑟𝑙)𝑥 → 𝜓) ↔ ∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) → ((((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑥(𝑆(𝑅↑𝑟𝑙)𝑥 → 𝜓)) ∧ 𝑙 ∈ ℕ0) ↔ (((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) ∧ 𝑙 ∈
ℕ0))) |
| 107 | 106 | anbi2d 740 |
. . . . . . . . . . 11
⊢
((∀𝑥(𝑆(𝑅↑𝑟𝑙)𝑥 → 𝜓) ↔ ∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) → (((𝑙 + 1) ∈ ℕ0 ∧
(((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑥(𝑆(𝑅↑𝑟𝑙)𝑥 → 𝜓)) ∧ 𝑙 ∈ ℕ0)) ↔ ((𝑙 + 1) ∈ ℕ0
∧ (((𝜂 ∧ 𝑙 ∈ ℕ0)
→ ∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) ∧ 𝑙 ∈
ℕ0)))) |
| 108 | 107 | anbi2d 740 |
. . . . . . . . . 10
⊢
((∀𝑥(𝑆(𝑅↑𝑟𝑙)𝑥 → 𝜓) ↔ ∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) → ((𝜂 ∧ ((𝑙 + 1) ∈ ℕ0 ∧
(((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑥(𝑆(𝑅↑𝑟𝑙)𝑥 → 𝜓)) ∧ 𝑙 ∈ ℕ0))) ↔ (𝜂 ∧ ((𝑙 + 1) ∈ ℕ0 ∧
(((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) ∧ 𝑙 ∈
ℕ0))))) |
| 109 | 30 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜂 ∧ ((𝑙 + 1) ∈ ℕ0 ∧
(((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) ∧ 𝑙 ∈ ℕ0))) → 𝑅 ∈ V) |
| 110 | 31 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜂 ∧ ((𝑙 + 1) ∈ ℕ0 ∧
(((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) ∧ 𝑙 ∈ ℕ0))) → Rel
𝑅) |
| 111 | | simprrr 805 |
. . . . . . . . . . . . 13
⊢ ((𝜂 ∧ ((𝑙 + 1) ∈ ℕ0 ∧
(((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) ∧ 𝑙 ∈ ℕ0))) → 𝑙 ∈
ℕ0) |
| 112 | | relexpsucl 13773 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ V ∧ Rel 𝑅 ∧ 𝑙 ∈ ℕ0) → (𝑅↑𝑟(𝑙 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑙))) |
| 113 | 109, 110,
111, 112 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢ ((𝜂 ∧ ((𝑙 + 1) ∈ ℕ0 ∧
(((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) ∧ 𝑙 ∈ ℕ0))) → (𝑅↑𝑟(𝑙 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑙))) |
| 114 | | simpl 473 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑆(𝑅 ∘ (𝑅↑𝑟𝑙))𝑥 ∧ (𝜂 ∧ ((𝑙 + 1) ∈ ℕ0 ∧
(((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) ∧ 𝑙 ∈ ℕ0)))) → 𝑆(𝑅 ∘ (𝑅↑𝑟𝑙))𝑥) |
| 115 | 39 | ad2antrl 764 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑆(𝑅 ∘ (𝑅↑𝑟𝑙))𝑥 ∧ (𝜂 ∧ ((𝑙 + 1) ∈ ℕ0 ∧
(((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) ∧ 𝑙 ∈ ℕ0)))) → 𝑆 ∈ V) |
| 116 | | brcog 5288 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑆 ∈ V ∧ 𝑥 ∈ V) → (𝑆(𝑅 ∘ (𝑅↑𝑟𝑙))𝑥 ↔ ∃𝑗(𝑆(𝑅↑𝑟𝑙)𝑗 ∧ 𝑗𝑅𝑥))) |
| 117 | 115, 68, 116 | sylancl 694 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑆(𝑅 ∘ (𝑅↑𝑟𝑙))𝑥 ∧ (𝜂 ∧ ((𝑙 + 1) ∈ ℕ0 ∧
(((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) ∧ 𝑙 ∈ ℕ0)))) → (𝑆(𝑅 ∘ (𝑅↑𝑟𝑙))𝑥 ↔ ∃𝑗(𝑆(𝑅↑𝑟𝑙)𝑗 ∧ 𝑗𝑅𝑥))) |
| 118 | 114, 117 | mpbid 222 |
. . . . . . . . . . . . . . 15
⊢ ((𝑆(𝑅 ∘ (𝑅↑𝑟𝑙))𝑥 ∧ (𝜂 ∧ ((𝑙 + 1) ∈ ℕ0 ∧
(((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) ∧ 𝑙 ∈ ℕ0)))) →
∃𝑗(𝑆(𝑅↑𝑟𝑙)𝑗 ∧ 𝑗𝑅𝑥)) |
| 119 | | simprl 794 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑆(𝑅 ∘ (𝑅↑𝑟𝑙))𝑥 ∧ (𝜂 ∧ ((𝑙 + 1) ∈ ℕ0 ∧
(((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) ∧ (𝑙 ∈ ℕ0 ∧ (𝑆(𝑅↑𝑟𝑙)𝑗 ∧ 𝑗𝑅𝑥)))))) → 𝜂) |
| 120 | | simprrl 804 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝑙 + 1) ∈ ℕ0
∧ (((𝜂 ∧ 𝑙 ∈ ℕ0)
→ ∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) ∧ (𝑙 ∈ ℕ0 ∧ (𝑆(𝑅↑𝑟𝑙)𝑗 ∧ 𝑗𝑅𝑥)))) → 𝑙 ∈ ℕ0) |
| 121 | 120 | ad2antll 765 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑆(𝑅 ∘ (𝑅↑𝑟𝑙))𝑥 ∧ (𝜂 ∧ ((𝑙 + 1) ∈ ℕ0 ∧
(((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) ∧ (𝑙 ∈ ℕ0 ∧ (𝑆(𝑅↑𝑟𝑙)𝑗 ∧ 𝑗𝑅𝑥)))))) → 𝑙 ∈ ℕ0) |
| 122 | 119, 121 | jca 554 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑆(𝑅 ∘ (𝑅↑𝑟𝑙))𝑥 ∧ (𝜂 ∧ ((𝑙 + 1) ∈ ℕ0 ∧
(((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) ∧ (𝑙 ∈ ℕ0 ∧ (𝑆(𝑅↑𝑟𝑙)𝑗 ∧ 𝑗𝑅𝑥)))))) → (𝜂 ∧ 𝑙 ∈
ℕ0)) |
| 123 | | simprl 794 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝑙 + 1) ∈ ℕ0
∧ (((𝜂 ∧ 𝑙 ∈ ℕ0)
→ ∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) ∧ (𝑙 ∈ ℕ0 ∧ (𝑆(𝑅↑𝑟𝑙)𝑗 ∧ 𝑗𝑅𝑥)))) → ((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑))) |
| 124 | 123 | ad2antll 765 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑆(𝑅 ∘ (𝑅↑𝑟𝑙))𝑥 ∧ (𝜂 ∧ ((𝑙 + 1) ∈ ℕ0 ∧
(((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) ∧ (𝑙 ∈ ℕ0 ∧ (𝑆(𝑅↑𝑟𝑙)𝑗 ∧ 𝑗𝑅𝑥)))))) → ((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑))) |
| 125 | 122, 124 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑆(𝑅 ∘ (𝑅↑𝑟𝑙))𝑥 ∧ (𝜂 ∧ ((𝑙 + 1) ∈ ℕ0 ∧
(((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) ∧ (𝑙 ∈ ℕ0 ∧ (𝑆(𝑅↑𝑟𝑙)𝑗 ∧ 𝑗𝑅𝑥)))))) → ∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) |
| 126 | | simprrl 804 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑) ∧ (𝑆(𝑅 ∘ (𝑅↑𝑟𝑙))𝑥 ∧ (𝜂 ∧ ((𝑙 + 1) ∈ ℕ0 ∧
(((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) ∧ (𝑙 ∈ ℕ0 ∧ (𝑆(𝑅↑𝑟𝑙)𝑗 ∧ 𝑗𝑅𝑥))))))) → 𝜂) |
| 127 | | simprrr 805 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) ∧ (𝑙 ∈ ℕ0 ∧ (𝑆(𝑅↑𝑟𝑙)𝑗 ∧ 𝑗𝑅𝑥))) → 𝑗𝑅𝑥) |
| 128 | 127 | ad2antll 765 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜂 ∧ ((𝑙 + 1) ∈ ℕ0 ∧
(((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) ∧ (𝑙 ∈ ℕ0 ∧ (𝑆(𝑅↑𝑟𝑙)𝑗 ∧ 𝑗𝑅𝑥))))) → 𝑗𝑅𝑥) |
| 129 | 128 | ad2antll 765 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑) ∧ (𝑆(𝑅 ∘ (𝑅↑𝑟𝑙))𝑥 ∧ (𝜂 ∧ ((𝑙 + 1) ∈ ℕ0 ∧
(((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) ∧ (𝑙 ∈ ℕ0 ∧ (𝑆(𝑅↑𝑟𝑙)𝑗 ∧ 𝑗𝑅𝑥))))))) → 𝑗𝑅𝑥) |
| 130 | | breq2 4657 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑖 = 𝑗 → (𝑆(𝑅↑𝑟𝑙)𝑖 ↔ 𝑆(𝑅↑𝑟𝑙)𝑗)) |
| 131 | | relexpindlem.6 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑖 = 𝑗 → (𝜑 ↔ 𝜃)) |
| 132 | 130, 131 | imbi12d 334 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑖 = 𝑗 → ((𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑) ↔ (𝑆(𝑅↑𝑟𝑙)𝑗 → 𝜃))) |
| 133 | 132 | cbvalv 2273 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑) ↔ ∀𝑗(𝑆(𝑅↑𝑟𝑙)𝑗 → 𝜃)) |
| 134 | | id 22 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑) ↔ ∀𝑗(𝑆(𝑅↑𝑟𝑙)𝑗 → 𝜃)) → (∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑) ↔ ∀𝑗(𝑆(𝑅↑𝑟𝑙)𝑗 → 𝜃))) |
| 135 | | imbi2 338 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢
((∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑) ↔ ∀𝑗(𝑆(𝑅↑𝑟𝑙)𝑗 → 𝜃)) → (((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) ↔ ((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑗(𝑆(𝑅↑𝑟𝑙)𝑗 → 𝜃)))) |
| 136 | 135 | anbi1d 741 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢
((∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑) ↔ ∀𝑗(𝑆(𝑅↑𝑟𝑙)𝑗 → 𝜃)) → ((((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) ∧ (𝑙 ∈ ℕ0 ∧ (𝑆(𝑅↑𝑟𝑙)𝑗 ∧ 𝑗𝑅𝑥))) ↔ (((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑗(𝑆(𝑅↑𝑟𝑙)𝑗 → 𝜃)) ∧ (𝑙 ∈ ℕ0 ∧ (𝑆(𝑅↑𝑟𝑙)𝑗 ∧ 𝑗𝑅𝑥))))) |
| 137 | 136 | anbi2d 740 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢
((∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑) ↔ ∀𝑗(𝑆(𝑅↑𝑟𝑙)𝑗 → 𝜃)) → (((𝑙 + 1) ∈ ℕ0 ∧
(((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) ∧ (𝑙 ∈ ℕ0 ∧ (𝑆(𝑅↑𝑟𝑙)𝑗 ∧ 𝑗𝑅𝑥)))) ↔ ((𝑙 + 1) ∈ ℕ0 ∧
(((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑗(𝑆(𝑅↑𝑟𝑙)𝑗 → 𝜃)) ∧ (𝑙 ∈ ℕ0 ∧ (𝑆(𝑅↑𝑟𝑙)𝑗 ∧ 𝑗𝑅𝑥)))))) |
| 138 | 137 | anbi2d 740 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
((∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑) ↔ ∀𝑗(𝑆(𝑅↑𝑟𝑙)𝑗 → 𝜃)) → ((𝜂 ∧ ((𝑙 + 1) ∈ ℕ0 ∧
(((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) ∧ (𝑙 ∈ ℕ0 ∧ (𝑆(𝑅↑𝑟𝑙)𝑗 ∧ 𝑗𝑅𝑥))))) ↔ (𝜂 ∧ ((𝑙 + 1) ∈ ℕ0 ∧
(((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑗(𝑆(𝑅↑𝑟𝑙)𝑗 → 𝜃)) ∧ (𝑙 ∈ ℕ0 ∧ (𝑆(𝑅↑𝑟𝑙)𝑗 ∧ 𝑗𝑅𝑥))))))) |
| 139 | 138 | anbi2d 740 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑) ↔ ∀𝑗(𝑆(𝑅↑𝑟𝑙)𝑗 → 𝜃)) → ((𝑆(𝑅 ∘ (𝑅↑𝑟𝑙))𝑥 ∧ (𝜂 ∧ ((𝑙 + 1) ∈ ℕ0 ∧
(((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) ∧ (𝑙 ∈ ℕ0 ∧ (𝑆(𝑅↑𝑟𝑙)𝑗 ∧ 𝑗𝑅𝑥)))))) ↔ (𝑆(𝑅 ∘ (𝑅↑𝑟𝑙))𝑥 ∧ (𝜂 ∧ ((𝑙 + 1) ∈ ℕ0 ∧
(((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑗(𝑆(𝑅↑𝑟𝑙)𝑗 → 𝜃)) ∧ (𝑙 ∈ ℕ0 ∧ (𝑆(𝑅↑𝑟𝑙)𝑗 ∧ 𝑗𝑅𝑥)))))))) |
| 140 | 134, 139 | anbi12d 747 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑) ↔ ∀𝑗(𝑆(𝑅↑𝑟𝑙)𝑗 → 𝜃)) → ((∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑) ∧ (𝑆(𝑅 ∘ (𝑅↑𝑟𝑙))𝑥 ∧ (𝜂 ∧ ((𝑙 + 1) ∈ ℕ0 ∧
(((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) ∧ (𝑙 ∈ ℕ0 ∧ (𝑆(𝑅↑𝑟𝑙)𝑗 ∧ 𝑗𝑅𝑥))))))) ↔ (∀𝑗(𝑆(𝑅↑𝑟𝑙)𝑗 → 𝜃) ∧ (𝑆(𝑅 ∘ (𝑅↑𝑟𝑙))𝑥 ∧ (𝜂 ∧ ((𝑙 + 1) ∈ ℕ0 ∧
(((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑗(𝑆(𝑅↑𝑟𝑙)𝑗 → 𝜃)) ∧ (𝑙 ∈ ℕ0 ∧ (𝑆(𝑅↑𝑟𝑙)𝑗 ∧ 𝑗𝑅𝑥))))))))) |
| 141 | | simprrl 804 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑗(𝑆(𝑅↑𝑟𝑙)𝑗 → 𝜃)) ∧ (𝑙 ∈ ℕ0 ∧ (𝑆(𝑅↑𝑟𝑙)𝑗 ∧ 𝑗𝑅𝑥))) → 𝑆(𝑅↑𝑟𝑙)𝑗) |
| 142 | 141 | ad2antll 765 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝜂 ∧ ((𝑙 + 1) ∈ ℕ0 ∧
(((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑗(𝑆(𝑅↑𝑟𝑙)𝑗 → 𝜃)) ∧ (𝑙 ∈ ℕ0 ∧ (𝑆(𝑅↑𝑟𝑙)𝑗 ∧ 𝑗𝑅𝑥))))) → 𝑆(𝑅↑𝑟𝑙)𝑗) |
| 143 | 142 | ad2antll 765 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((∀𝑗(𝑆(𝑅↑𝑟𝑙)𝑗 → 𝜃) ∧ (𝑆(𝑅 ∘ (𝑅↑𝑟𝑙))𝑥 ∧ (𝜂 ∧ ((𝑙 + 1) ∈ ℕ0 ∧
(((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑗(𝑆(𝑅↑𝑟𝑙)𝑗 → 𝜃)) ∧ (𝑙 ∈ ℕ0 ∧ (𝑆(𝑅↑𝑟𝑙)𝑗 ∧ 𝑗𝑅𝑥))))))) → 𝑆(𝑅↑𝑟𝑙)𝑗) |
| 144 | | sp 2053 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢
(∀𝑗(𝑆(𝑅↑𝑟𝑙)𝑗 → 𝜃) → (𝑆(𝑅↑𝑟𝑙)𝑗 → 𝜃)) |
| 145 | 144 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
((∀𝑗(𝑆(𝑅↑𝑟𝑙)𝑗 → 𝜃) ∧ (𝑆(𝑅 ∘ (𝑅↑𝑟𝑙))𝑥 ∧ (𝜂 ∧ ((𝑙 + 1) ∈ ℕ0 ∧
(((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑗(𝑆(𝑅↑𝑟𝑙)𝑗 → 𝜃)) ∧ (𝑙 ∈ ℕ0 ∧ (𝑆(𝑅↑𝑟𝑙)𝑗 ∧ 𝑗𝑅𝑥))))))) → (𝑆(𝑅↑𝑟𝑙)𝑗 → 𝜃)) |
| 146 | 143, 145 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
((∀𝑗(𝑆(𝑅↑𝑟𝑙)𝑗 → 𝜃) ∧ (𝑆(𝑅 ∘ (𝑅↑𝑟𝑙))𝑥 ∧ (𝜂 ∧ ((𝑙 + 1) ∈ ℕ0 ∧
(((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑗(𝑆(𝑅↑𝑟𝑙)𝑗 → 𝜃)) ∧ (𝑙 ∈ ℕ0 ∧ (𝑆(𝑅↑𝑟𝑙)𝑗 ∧ 𝑗𝑅𝑥))))))) → 𝜃) |
| 147 | 140, 146 | syl6bi 243 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
((∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑) ↔ ∀𝑗(𝑆(𝑅↑𝑟𝑙)𝑗 → 𝜃)) → ((∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑) ∧ (𝑆(𝑅 ∘ (𝑅↑𝑟𝑙))𝑥 ∧ (𝜂 ∧ ((𝑙 + 1) ∈ ℕ0 ∧
(((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) ∧ (𝑙 ∈ ℕ0 ∧ (𝑆(𝑅↑𝑟𝑙)𝑗 ∧ 𝑗𝑅𝑥))))))) → 𝜃)) |
| 148 | 133, 147 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
((∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑) ∧ (𝑆(𝑅 ∘ (𝑅↑𝑟𝑙))𝑥 ∧ (𝜂 ∧ ((𝑙 + 1) ∈ ℕ0 ∧
(((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) ∧ (𝑙 ∈ ℕ0 ∧ (𝑆(𝑅↑𝑟𝑙)𝑗 ∧ 𝑗𝑅𝑥))))))) → 𝜃) |
| 149 | | relexpindlem.8 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜂 → (𝑗𝑅𝑥 → (𝜃 → 𝜓))) |
| 150 | 126, 129,
148, 149 | syl3c 66 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑) ∧ (𝑆(𝑅 ∘ (𝑅↑𝑟𝑙))𝑥 ∧ (𝜂 ∧ ((𝑙 + 1) ∈ ℕ0 ∧
(((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) ∧ (𝑙 ∈ ℕ0 ∧ (𝑆(𝑅↑𝑟𝑙)𝑗 ∧ 𝑗𝑅𝑥))))))) → 𝜓) |
| 151 | 125, 150 | mpancom 703 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑆(𝑅 ∘ (𝑅↑𝑟𝑙))𝑥 ∧ (𝜂 ∧ ((𝑙 + 1) ∈ ℕ0 ∧
(((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) ∧ (𝑙 ∈ ℕ0 ∧ (𝑆(𝑅↑𝑟𝑙)𝑗 ∧ 𝑗𝑅𝑥)))))) → 𝜓) |
| 152 | 151 | expcom 451 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜂 ∧ ((𝑙 + 1) ∈ ℕ0 ∧
(((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) ∧ (𝑙 ∈ ℕ0 ∧ (𝑆(𝑅↑𝑟𝑙)𝑗 ∧ 𝑗𝑅𝑥))))) → (𝑆(𝑅 ∘ (𝑅↑𝑟𝑙))𝑥 → 𝜓)) |
| 153 | 152 | expcom 451 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑙 + 1) ∈ ℕ0
∧ (((𝜂 ∧ 𝑙 ∈ ℕ0)
→ ∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) ∧ (𝑙 ∈ ℕ0 ∧ (𝑆(𝑅↑𝑟𝑙)𝑗 ∧ 𝑗𝑅𝑥)))) → (𝜂 → (𝑆(𝑅 ∘ (𝑅↑𝑟𝑙))𝑥 → 𝜓))) |
| 154 | 153 | expcom 451 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) ∧ (𝑙 ∈ ℕ0 ∧ (𝑆(𝑅↑𝑟𝑙)𝑗 ∧ 𝑗𝑅𝑥))) → ((𝑙 + 1) ∈ ℕ0 →
(𝜂 → (𝑆(𝑅 ∘ (𝑅↑𝑟𝑙))𝑥 → 𝜓)))) |
| 155 | 154 | anassrs 680 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜂 ∧ 𝑙 ∈ ℕ0)
→ ∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) ∧ 𝑙 ∈ ℕ0) ∧ (𝑆(𝑅↑𝑟𝑙)𝑗 ∧ 𝑗𝑅𝑥)) → ((𝑙 + 1) ∈ ℕ0 →
(𝜂 → (𝑆(𝑅 ∘ (𝑅↑𝑟𝑙))𝑥 → 𝜓)))) |
| 156 | 155 | impcom 446 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑙 + 1) ∈ ℕ0
∧ ((((𝜂 ∧ 𝑙 ∈ ℕ0)
→ ∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) ∧ 𝑙 ∈ ℕ0) ∧ (𝑆(𝑅↑𝑟𝑙)𝑗 ∧ 𝑗𝑅𝑥))) → (𝜂 → (𝑆(𝑅 ∘ (𝑅↑𝑟𝑙))𝑥 → 𝜓))) |
| 157 | 156 | anassrs 680 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑙 + 1) ∈ ℕ0
∧ (((𝜂 ∧ 𝑙 ∈ ℕ0)
→ ∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) ∧ 𝑙 ∈ ℕ0)) ∧ (𝑆(𝑅↑𝑟𝑙)𝑗 ∧ 𝑗𝑅𝑥)) → (𝜂 → (𝑆(𝑅 ∘ (𝑅↑𝑟𝑙))𝑥 → 𝜓))) |
| 158 | 157 | impcom 446 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜂 ∧ (((𝑙 + 1) ∈ ℕ0 ∧
(((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) ∧ 𝑙 ∈ ℕ0)) ∧ (𝑆(𝑅↑𝑟𝑙)𝑗 ∧ 𝑗𝑅𝑥))) → (𝑆(𝑅 ∘ (𝑅↑𝑟𝑙))𝑥 → 𝜓)) |
| 159 | 158 | anassrs 680 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜂 ∧ ((𝑙 + 1) ∈ ℕ0 ∧
(((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) ∧ 𝑙 ∈ ℕ0))) ∧ (𝑆(𝑅↑𝑟𝑙)𝑗 ∧ 𝑗𝑅𝑥)) → (𝑆(𝑅 ∘ (𝑅↑𝑟𝑙))𝑥 → 𝜓)) |
| 160 | 159 | impcom 446 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑆(𝑅 ∘ (𝑅↑𝑟𝑙))𝑥 ∧ ((𝜂 ∧ ((𝑙 + 1) ∈ ℕ0 ∧
(((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) ∧ 𝑙 ∈ ℕ0))) ∧ (𝑆(𝑅↑𝑟𝑙)𝑗 ∧ 𝑗𝑅𝑥))) → 𝜓) |
| 161 | 160 | anassrs 680 |
. . . . . . . . . . . . . . 15
⊢ (((𝑆(𝑅 ∘ (𝑅↑𝑟𝑙))𝑥 ∧ (𝜂 ∧ ((𝑙 + 1) ∈ ℕ0 ∧
(((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) ∧ 𝑙 ∈ ℕ0)))) ∧ (𝑆(𝑅↑𝑟𝑙)𝑗 ∧ 𝑗𝑅𝑥)) → 𝜓) |
| 162 | 118, 161 | exlimddv 1863 |
. . . . . . . . . . . . . 14
⊢ ((𝑆(𝑅 ∘ (𝑅↑𝑟𝑙))𝑥 ∧ (𝜂 ∧ ((𝑙 + 1) ∈ ℕ0 ∧
(((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) ∧ 𝑙 ∈ ℕ0)))) → 𝜓) |
| 163 | 162 | expcom 451 |
. . . . . . . . . . . . 13
⊢ ((𝜂 ∧ ((𝑙 + 1) ∈ ℕ0 ∧
(((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) ∧ 𝑙 ∈ ℕ0))) → (𝑆(𝑅 ∘ (𝑅↑𝑟𝑙))𝑥 → 𝜓)) |
| 164 | | breq 4655 |
. . . . . . . . . . . . . 14
⊢ ((𝑅↑𝑟(𝑙 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑙)) → (𝑆(𝑅↑𝑟(𝑙 + 1))𝑥 ↔ 𝑆(𝑅 ∘ (𝑅↑𝑟𝑙))𝑥)) |
| 165 | 164 | imbi1d 331 |
. . . . . . . . . . . . 13
⊢ ((𝑅↑𝑟(𝑙 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑙)) → ((𝑆(𝑅↑𝑟(𝑙 + 1))𝑥 → 𝜓) ↔ (𝑆(𝑅 ∘ (𝑅↑𝑟𝑙))𝑥 → 𝜓))) |
| 166 | 163, 165 | syl5ibr 236 |
. . . . . . . . . . . 12
⊢ ((𝑅↑𝑟(𝑙 + 1)) = (𝑅 ∘ (𝑅↑𝑟𝑙)) → ((𝜂 ∧ ((𝑙 + 1) ∈ ℕ0 ∧
(((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) ∧ 𝑙 ∈ ℕ0))) → (𝑆(𝑅↑𝑟(𝑙 + 1))𝑥 → 𝜓))) |
| 167 | 113, 166 | mpcom 38 |
. . . . . . . . . . 11
⊢ ((𝜂 ∧ ((𝑙 + 1) ∈ ℕ0 ∧
(((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) ∧ 𝑙 ∈ ℕ0))) → (𝑆(𝑅↑𝑟(𝑙 + 1))𝑥 → 𝜓)) |
| 168 | 167 | alrimiv 1855 |
. . . . . . . . . 10
⊢ ((𝜂 ∧ ((𝑙 + 1) ∈ ℕ0 ∧
(((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) ∧ 𝑙 ∈ ℕ0))) →
∀𝑥(𝑆(𝑅↑𝑟(𝑙 + 1))𝑥 → 𝜓)) |
| 169 | 108, 168 | syl6bi 243 |
. . . . . . . . 9
⊢
((∀𝑥(𝑆(𝑅↑𝑟𝑙)𝑥 → 𝜓) ↔ ∀𝑖(𝑆(𝑅↑𝑟𝑙)𝑖 → 𝜑)) → ((𝜂 ∧ ((𝑙 + 1) ∈ ℕ0 ∧
(((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑥(𝑆(𝑅↑𝑟𝑙)𝑥 → 𝜓)) ∧ 𝑙 ∈ ℕ0))) →
∀𝑥(𝑆(𝑅↑𝑟(𝑙 + 1))𝑥 → 𝜓))) |
| 170 | 104, 169 | ax-mp 5 |
. . . . . . . 8
⊢ ((𝜂 ∧ ((𝑙 + 1) ∈ ℕ0 ∧
(((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑥(𝑆(𝑅↑𝑟𝑙)𝑥 → 𝜓)) ∧ 𝑙 ∈ ℕ0))) →
∀𝑥(𝑆(𝑅↑𝑟(𝑙 + 1))𝑥 → 𝜓)) |
| 171 | 170 | anassrs 680 |
. . . . . . 7
⊢ (((𝜂 ∧ (𝑙 + 1) ∈ ℕ0) ∧
(((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑥(𝑆(𝑅↑𝑟𝑙)𝑥 → 𝜓)) ∧ 𝑙 ∈ ℕ0)) →
∀𝑥(𝑆(𝑅↑𝑟(𝑙 + 1))𝑥 → 𝜓)) |
| 172 | 171 | expcom 451 |
. . . . . 6
⊢ ((((𝜂 ∧ 𝑙 ∈ ℕ0) →
∀𝑥(𝑆(𝑅↑𝑟𝑙)𝑥 → 𝜓)) ∧ 𝑙 ∈ ℕ0) → ((𝜂 ∧ (𝑙 + 1) ∈ ℕ0) →
∀𝑥(𝑆(𝑅↑𝑟(𝑙 + 1))𝑥 → 𝜓))) |
| 173 | 172 | expcom 451 |
. . . . 5
⊢ (𝑙 ∈ ℕ0
→ (((𝜂 ∧ 𝑙 ∈ ℕ0)
→ ∀𝑥(𝑆(𝑅↑𝑟𝑙)𝑥 → 𝜓)) → ((𝜂 ∧ (𝑙 + 1) ∈ ℕ0) →
∀𝑥(𝑆(𝑅↑𝑟(𝑙 + 1))𝑥 → 𝜓)))) |
| 174 | 8, 15, 22, 29, 100, 173 | nn0ind 11472 |
. . . 4
⊢ (𝑛 ∈ ℕ0
→ ((𝜂 ∧ 𝑛 ∈ ℕ0)
→ ∀𝑥(𝑆(𝑅↑𝑟𝑛)𝑥 → 𝜓))) |
| 175 | 1, 174 | mpcom 38 |
. . 3
⊢ ((𝜂 ∧ 𝑛 ∈ ℕ0) →
∀𝑥(𝑆(𝑅↑𝑟𝑛)𝑥 → 𝜓)) |
| 176 | 175 | 19.21bi 2059 |
. 2
⊢ ((𝜂 ∧ 𝑛 ∈ ℕ0) → (𝑆(𝑅↑𝑟𝑛)𝑥 → 𝜓)) |
| 177 | 176 | ex 450 |
1
⊢ (𝜂 → (𝑛 ∈ ℕ0 → (𝑆(𝑅↑𝑟𝑛)𝑥 → 𝜓))) |