MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressatans Structured version   Visualization version   GIF version

Theorem ressatans 24661
Description: The real number line is a subset of the domain of continuity of the arctangent. (Contributed by Mario Carneiro, 7-Apr-2015.)
Hypotheses
Ref Expression
atansopn.d 𝐷 = (ℂ ∖ (-∞(,]0))
atansopn.s 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷}
Assertion
Ref Expression
ressatans ℝ ⊆ 𝑆
Distinct variable group:   𝑦,𝐷
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem ressatans
StepHypRef Expression
1 ax-resscn 9993 . . 3 ℝ ⊆ ℂ
2 1re 10039 . . . . . . . 8 1 ∈ ℝ
3 resqcl 12931 . . . . . . . 8 (𝑦 ∈ ℝ → (𝑦↑2) ∈ ℝ)
4 readdcl 10019 . . . . . . . 8 ((1 ∈ ℝ ∧ (𝑦↑2) ∈ ℝ) → (1 + (𝑦↑2)) ∈ ℝ)
52, 3, 4sylancr 695 . . . . . . 7 (𝑦 ∈ ℝ → (1 + (𝑦↑2)) ∈ ℝ)
65recnd 10068 . . . . . 6 (𝑦 ∈ ℝ → (1 + (𝑦↑2)) ∈ ℂ)
7 0re 10040 . . . . . . . . . 10 0 ∈ ℝ
87a1i 11 . . . . . . . . 9 (𝑦 ∈ ℝ → 0 ∈ ℝ)
92a1i 11 . . . . . . . . 9 (𝑦 ∈ ℝ → 1 ∈ ℝ)
10 0lt1 10550 . . . . . . . . . 10 0 < 1
1110a1i 11 . . . . . . . . 9 (𝑦 ∈ ℝ → 0 < 1)
12 sqge0 12940 . . . . . . . . . 10 (𝑦 ∈ ℝ → 0 ≤ (𝑦↑2))
13 addge01 10538 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ (𝑦↑2) ∈ ℝ) → (0 ≤ (𝑦↑2) ↔ 1 ≤ (1 + (𝑦↑2))))
142, 3, 13sylancr 695 . . . . . . . . . 10 (𝑦 ∈ ℝ → (0 ≤ (𝑦↑2) ↔ 1 ≤ (1 + (𝑦↑2))))
1512, 14mpbid 222 . . . . . . . . 9 (𝑦 ∈ ℝ → 1 ≤ (1 + (𝑦↑2)))
168, 9, 5, 11, 15ltletrd 10197 . . . . . . . 8 (𝑦 ∈ ℝ → 0 < (1 + (𝑦↑2)))
17 ltnle 10117 . . . . . . . . 9 ((0 ∈ ℝ ∧ (1 + (𝑦↑2)) ∈ ℝ) → (0 < (1 + (𝑦↑2)) ↔ ¬ (1 + (𝑦↑2)) ≤ 0))
187, 5, 17sylancr 695 . . . . . . . 8 (𝑦 ∈ ℝ → (0 < (1 + (𝑦↑2)) ↔ ¬ (1 + (𝑦↑2)) ≤ 0))
1916, 18mpbid 222 . . . . . . 7 (𝑦 ∈ ℝ → ¬ (1 + (𝑦↑2)) ≤ 0)
20 mnfxr 10096 . . . . . . . . 9 -∞ ∈ ℝ*
21 elioc2 12236 . . . . . . . . 9 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ) → ((1 + (𝑦↑2)) ∈ (-∞(,]0) ↔ ((1 + (𝑦↑2)) ∈ ℝ ∧ -∞ < (1 + (𝑦↑2)) ∧ (1 + (𝑦↑2)) ≤ 0)))
2220, 7, 21mp2an 708 . . . . . . . 8 ((1 + (𝑦↑2)) ∈ (-∞(,]0) ↔ ((1 + (𝑦↑2)) ∈ ℝ ∧ -∞ < (1 + (𝑦↑2)) ∧ (1 + (𝑦↑2)) ≤ 0))
2322simp3bi 1078 . . . . . . 7 ((1 + (𝑦↑2)) ∈ (-∞(,]0) → (1 + (𝑦↑2)) ≤ 0)
2419, 23nsyl 135 . . . . . 6 (𝑦 ∈ ℝ → ¬ (1 + (𝑦↑2)) ∈ (-∞(,]0))
256, 24eldifd 3585 . . . . 5 (𝑦 ∈ ℝ → (1 + (𝑦↑2)) ∈ (ℂ ∖ (-∞(,]0)))
26 atansopn.d . . . . 5 𝐷 = (ℂ ∖ (-∞(,]0))
2725, 26syl6eleqr 2712 . . . 4 (𝑦 ∈ ℝ → (1 + (𝑦↑2)) ∈ 𝐷)
2827rgen 2922 . . 3 𝑦 ∈ ℝ (1 + (𝑦↑2)) ∈ 𝐷
29 ssrab 3680 . . 3 (ℝ ⊆ {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷} ↔ (ℝ ⊆ ℂ ∧ ∀𝑦 ∈ ℝ (1 + (𝑦↑2)) ∈ 𝐷))
301, 28, 29mpbir2an 955 . 2 ℝ ⊆ {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷}
31 atansopn.s . 2 𝑆 = {𝑦 ∈ ℂ ∣ (1 + (𝑦↑2)) ∈ 𝐷}
3230, 31sseqtr4i 3638 1 ℝ ⊆ 𝑆
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  w3a 1037   = wceq 1483  wcel 1990  wral 2912  {crab 2916  cdif 3571  wss 3574   class class class wbr 4653  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939  -∞cmnf 10072  *cxr 10073   < clt 10074  cle 10075  2c2 11070  (,]cioc 12176  cexp 12860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-ioc 12180  df-seq 12802  df-exp 12861
This theorem is referenced by:  leibpi  24669
  Copyright terms: Public domain W3C validator