| Step | Hyp | Ref
| Expression |
| 1 | | pwssplit1.y |
. . 3
⊢ 𝑌 = (𝑊 ↑s 𝑈) |
| 2 | | pwssplit1.z |
. . 3
⊢ 𝑍 = (𝑊 ↑s 𝑉) |
| 3 | | pwssplit1.b |
. . 3
⊢ 𝐵 = (Base‘𝑌) |
| 4 | | pwssplit1.c |
. . 3
⊢ 𝐶 = (Base‘𝑍) |
| 5 | | pwssplit1.f |
. . 3
⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝑥 ↾ 𝑉)) |
| 6 | 1, 2, 3, 4, 5 | pwssplit0 19058 |
. 2
⊢ ((𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝐹:𝐵⟶𝐶) |
| 7 | | simp1 1061 |
. . . . . . . . 9
⊢ ((𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝑊 ∈ Mnd) |
| 8 | | simp2 1062 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝑈 ∈ 𝑋) |
| 9 | | simp3 1063 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝑉 ⊆ 𝑈) |
| 10 | 8, 9 | ssexd 4805 |
. . . . . . . . 9
⊢ ((𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝑉 ∈ V) |
| 11 | | eqid 2622 |
. . . . . . . . . 10
⊢
(Base‘𝑊) =
(Base‘𝑊) |
| 12 | 2, 11, 4 | pwselbasb 16148 |
. . . . . . . . 9
⊢ ((𝑊 ∈ Mnd ∧ 𝑉 ∈ V) → (𝑎 ∈ 𝐶 ↔ 𝑎:𝑉⟶(Base‘𝑊))) |
| 13 | 7, 10, 12 | syl2anc 693 |
. . . . . . . 8
⊢ ((𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → (𝑎 ∈ 𝐶 ↔ 𝑎:𝑉⟶(Base‘𝑊))) |
| 14 | 13 | biimpa 501 |
. . . . . . 7
⊢ (((𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑎 ∈ 𝐶) → 𝑎:𝑉⟶(Base‘𝑊)) |
| 15 | | fvex 6201 |
. . . . . . . . . 10
⊢
(0g‘𝑊) ∈ V |
| 16 | 15 | fconst 6091 |
. . . . . . . . 9
⊢ ((𝑈 ∖ 𝑉) × {(0g‘𝑊)}):(𝑈 ∖ 𝑉)⟶{(0g‘𝑊)} |
| 17 | 16 | a1i 11 |
. . . . . . . 8
⊢ (((𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑎 ∈ 𝐶) → ((𝑈 ∖ 𝑉) × {(0g‘𝑊)}):(𝑈 ∖ 𝑉)⟶{(0g‘𝑊)}) |
| 18 | | simpl1 1064 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑎 ∈ 𝐶) → 𝑊 ∈ Mnd) |
| 19 | | eqid 2622 |
. . . . . . . . . . 11
⊢
(0g‘𝑊) = (0g‘𝑊) |
| 20 | 11, 19 | mndidcl 17308 |
. . . . . . . . . 10
⊢ (𝑊 ∈ Mnd →
(0g‘𝑊)
∈ (Base‘𝑊)) |
| 21 | 18, 20 | syl 17 |
. . . . . . . . 9
⊢ (((𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑎 ∈ 𝐶) → (0g‘𝑊) ∈ (Base‘𝑊)) |
| 22 | 21 | snssd 4340 |
. . . . . . . 8
⊢ (((𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑎 ∈ 𝐶) → {(0g‘𝑊)} ⊆ (Base‘𝑊)) |
| 23 | 17, 22 | fssd 6057 |
. . . . . . 7
⊢ (((𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑎 ∈ 𝐶) → ((𝑈 ∖ 𝑉) × {(0g‘𝑊)}):(𝑈 ∖ 𝑉)⟶(Base‘𝑊)) |
| 24 | | disjdif 4040 |
. . . . . . . 8
⊢ (𝑉 ∩ (𝑈 ∖ 𝑉)) = ∅ |
| 25 | 24 | a1i 11 |
. . . . . . 7
⊢ (((𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑎 ∈ 𝐶) → (𝑉 ∩ (𝑈 ∖ 𝑉)) = ∅) |
| 26 | | fun 6066 |
. . . . . . 7
⊢ (((𝑎:𝑉⟶(Base‘𝑊) ∧ ((𝑈 ∖ 𝑉) × {(0g‘𝑊)}):(𝑈 ∖ 𝑉)⟶(Base‘𝑊)) ∧ (𝑉 ∩ (𝑈 ∖ 𝑉)) = ∅) → (𝑎 ∪ ((𝑈 ∖ 𝑉) × {(0g‘𝑊)})):(𝑉 ∪ (𝑈 ∖ 𝑉))⟶((Base‘𝑊) ∪ (Base‘𝑊))) |
| 27 | 14, 23, 25, 26 | syl21anc 1325 |
. . . . . 6
⊢ (((𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑎 ∈ 𝐶) → (𝑎 ∪ ((𝑈 ∖ 𝑉) × {(0g‘𝑊)})):(𝑉 ∪ (𝑈 ∖ 𝑉))⟶((Base‘𝑊) ∪ (Base‘𝑊))) |
| 28 | | simpl3 1066 |
. . . . . . . 8
⊢ (((𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑎 ∈ 𝐶) → 𝑉 ⊆ 𝑈) |
| 29 | | undif 4049 |
. . . . . . . 8
⊢ (𝑉 ⊆ 𝑈 ↔ (𝑉 ∪ (𝑈 ∖ 𝑉)) = 𝑈) |
| 30 | 28, 29 | sylib 208 |
. . . . . . 7
⊢ (((𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑎 ∈ 𝐶) → (𝑉 ∪ (𝑈 ∖ 𝑉)) = 𝑈) |
| 31 | | unidm 3756 |
. . . . . . . 8
⊢
((Base‘𝑊)
∪ (Base‘𝑊)) =
(Base‘𝑊) |
| 32 | 31 | a1i 11 |
. . . . . . 7
⊢ (((𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑎 ∈ 𝐶) → ((Base‘𝑊) ∪ (Base‘𝑊)) = (Base‘𝑊)) |
| 33 | 30, 32 | feq23d 6040 |
. . . . . 6
⊢ (((𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑎 ∈ 𝐶) → ((𝑎 ∪ ((𝑈 ∖ 𝑉) × {(0g‘𝑊)})):(𝑉 ∪ (𝑈 ∖ 𝑉))⟶((Base‘𝑊) ∪ (Base‘𝑊)) ↔ (𝑎 ∪ ((𝑈 ∖ 𝑉) × {(0g‘𝑊)})):𝑈⟶(Base‘𝑊))) |
| 34 | 27, 33 | mpbid 222 |
. . . . 5
⊢ (((𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑎 ∈ 𝐶) → (𝑎 ∪ ((𝑈 ∖ 𝑉) × {(0g‘𝑊)})):𝑈⟶(Base‘𝑊)) |
| 35 | | simpl2 1065 |
. . . . . 6
⊢ (((𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑎 ∈ 𝐶) → 𝑈 ∈ 𝑋) |
| 36 | 1, 11, 3 | pwselbasb 16148 |
. . . . . 6
⊢ ((𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋) → ((𝑎 ∪ ((𝑈 ∖ 𝑉) × {(0g‘𝑊)})) ∈ 𝐵 ↔ (𝑎 ∪ ((𝑈 ∖ 𝑉) × {(0g‘𝑊)})):𝑈⟶(Base‘𝑊))) |
| 37 | 18, 35, 36 | syl2anc 693 |
. . . . 5
⊢ (((𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑎 ∈ 𝐶) → ((𝑎 ∪ ((𝑈 ∖ 𝑉) × {(0g‘𝑊)})) ∈ 𝐵 ↔ (𝑎 ∪ ((𝑈 ∖ 𝑉) × {(0g‘𝑊)})):𝑈⟶(Base‘𝑊))) |
| 38 | 34, 37 | mpbird 247 |
. . . 4
⊢ (((𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑎 ∈ 𝐶) → (𝑎 ∪ ((𝑈 ∖ 𝑉) × {(0g‘𝑊)})) ∈ 𝐵) |
| 39 | 5 | fvtresfn 6284 |
. . . . . 6
⊢ ((𝑎 ∪ ((𝑈 ∖ 𝑉) × {(0g‘𝑊)})) ∈ 𝐵 → (𝐹‘(𝑎 ∪ ((𝑈 ∖ 𝑉) × {(0g‘𝑊)}))) = ((𝑎 ∪ ((𝑈 ∖ 𝑉) × {(0g‘𝑊)})) ↾ 𝑉)) |
| 40 | 38, 39 | syl 17 |
. . . . 5
⊢ (((𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑎 ∈ 𝐶) → (𝐹‘(𝑎 ∪ ((𝑈 ∖ 𝑉) × {(0g‘𝑊)}))) = ((𝑎 ∪ ((𝑈 ∖ 𝑉) × {(0g‘𝑊)})) ↾ 𝑉)) |
| 41 | | resundir 5411 |
. . . . . . 7
⊢ ((𝑎 ∪ ((𝑈 ∖ 𝑉) × {(0g‘𝑊)})) ↾ 𝑉) = ((𝑎 ↾ 𝑉) ∪ (((𝑈 ∖ 𝑉) × {(0g‘𝑊)}) ↾ 𝑉)) |
| 42 | | ffn 6045 |
. . . . . . . . 9
⊢ (𝑎:𝑉⟶(Base‘𝑊) → 𝑎 Fn 𝑉) |
| 43 | | fnresdm 6000 |
. . . . . . . . 9
⊢ (𝑎 Fn 𝑉 → (𝑎 ↾ 𝑉) = 𝑎) |
| 44 | 14, 42, 43 | 3syl 18 |
. . . . . . . 8
⊢ (((𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑎 ∈ 𝐶) → (𝑎 ↾ 𝑉) = 𝑎) |
| 45 | | incom 3805 |
. . . . . . . . . 10
⊢ ((𝑈 ∖ 𝑉) ∩ 𝑉) = (𝑉 ∩ (𝑈 ∖ 𝑉)) |
| 46 | 45, 24 | eqtri 2644 |
. . . . . . . . 9
⊢ ((𝑈 ∖ 𝑉) ∩ 𝑉) = ∅ |
| 47 | | fnconstg 6093 |
. . . . . . . . . . 11
⊢
((0g‘𝑊) ∈ V → ((𝑈 ∖ 𝑉) × {(0g‘𝑊)}) Fn (𝑈 ∖ 𝑉)) |
| 48 | 15, 47 | ax-mp 5 |
. . . . . . . . . 10
⊢ ((𝑈 ∖ 𝑉) × {(0g‘𝑊)}) Fn (𝑈 ∖ 𝑉) |
| 49 | | fnresdisj 6001 |
. . . . . . . . . 10
⊢ (((𝑈 ∖ 𝑉) × {(0g‘𝑊)}) Fn (𝑈 ∖ 𝑉) → (((𝑈 ∖ 𝑉) ∩ 𝑉) = ∅ ↔ (((𝑈 ∖ 𝑉) × {(0g‘𝑊)}) ↾ 𝑉) = ∅)) |
| 50 | 48, 49 | mp1i 13 |
. . . . . . . . 9
⊢ (((𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑎 ∈ 𝐶) → (((𝑈 ∖ 𝑉) ∩ 𝑉) = ∅ ↔ (((𝑈 ∖ 𝑉) × {(0g‘𝑊)}) ↾ 𝑉) = ∅)) |
| 51 | 46, 50 | mpbii 223 |
. . . . . . . 8
⊢ (((𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑎 ∈ 𝐶) → (((𝑈 ∖ 𝑉) × {(0g‘𝑊)}) ↾ 𝑉) = ∅) |
| 52 | 44, 51 | uneq12d 3768 |
. . . . . . 7
⊢ (((𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑎 ∈ 𝐶) → ((𝑎 ↾ 𝑉) ∪ (((𝑈 ∖ 𝑉) × {(0g‘𝑊)}) ↾ 𝑉)) = (𝑎 ∪ ∅)) |
| 53 | 41, 52 | syl5eq 2668 |
. . . . . 6
⊢ (((𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑎 ∈ 𝐶) → ((𝑎 ∪ ((𝑈 ∖ 𝑉) × {(0g‘𝑊)})) ↾ 𝑉) = (𝑎 ∪ ∅)) |
| 54 | | un0 3967 |
. . . . . 6
⊢ (𝑎 ∪ ∅) = 𝑎 |
| 55 | 53, 54 | syl6eq 2672 |
. . . . 5
⊢ (((𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑎 ∈ 𝐶) → ((𝑎 ∪ ((𝑈 ∖ 𝑉) × {(0g‘𝑊)})) ↾ 𝑉) = 𝑎) |
| 56 | 40, 55 | eqtr2d 2657 |
. . . 4
⊢ (((𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑎 ∈ 𝐶) → 𝑎 = (𝐹‘(𝑎 ∪ ((𝑈 ∖ 𝑉) × {(0g‘𝑊)})))) |
| 57 | | fveq2 6191 |
. . . . . 6
⊢ (𝑏 = (𝑎 ∪ ((𝑈 ∖ 𝑉) × {(0g‘𝑊)})) → (𝐹‘𝑏) = (𝐹‘(𝑎 ∪ ((𝑈 ∖ 𝑉) × {(0g‘𝑊)})))) |
| 58 | 57 | eqeq2d 2632 |
. . . . 5
⊢ (𝑏 = (𝑎 ∪ ((𝑈 ∖ 𝑉) × {(0g‘𝑊)})) → (𝑎 = (𝐹‘𝑏) ↔ 𝑎 = (𝐹‘(𝑎 ∪ ((𝑈 ∖ 𝑉) × {(0g‘𝑊)}))))) |
| 59 | 58 | rspcev 3309 |
. . . 4
⊢ (((𝑎 ∪ ((𝑈 ∖ 𝑉) × {(0g‘𝑊)})) ∈ 𝐵 ∧ 𝑎 = (𝐹‘(𝑎 ∪ ((𝑈 ∖ 𝑉) × {(0g‘𝑊)})))) → ∃𝑏 ∈ 𝐵 𝑎 = (𝐹‘𝑏)) |
| 60 | 38, 56, 59 | syl2anc 693 |
. . 3
⊢ (((𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) ∧ 𝑎 ∈ 𝐶) → ∃𝑏 ∈ 𝐵 𝑎 = (𝐹‘𝑏)) |
| 61 | 60 | ralrimiva 2966 |
. 2
⊢ ((𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → ∀𝑎 ∈ 𝐶 ∃𝑏 ∈ 𝐵 𝑎 = (𝐹‘𝑏)) |
| 62 | | dffo3 6374 |
. 2
⊢ (𝐹:𝐵–onto→𝐶 ↔ (𝐹:𝐵⟶𝐶 ∧ ∀𝑎 ∈ 𝐶 ∃𝑏 ∈ 𝐵 𝑎 = (𝐹‘𝑏))) |
| 63 | 6, 61, 62 | sylanbrc 698 |
1
⊢ ((𝑊 ∈ Mnd ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ⊆ 𝑈) → 𝐹:𝐵–onto→𝐶) |