MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fseq1p1m1 Structured version   Visualization version   GIF version

Theorem fseq1p1m1 12414
Description: Add/remove an item to/from the end of a finite sequence. (Contributed by Paul Chapman, 17-Nov-2012.) (Revised by Mario Carneiro, 7-Mar-2014.)
Hypothesis
Ref Expression
fseq1p1m1.1 𝐻 = {⟨(𝑁 + 1), 𝐵⟩}
Assertion
Ref Expression
fseq1p1m1 (𝑁 ∈ ℕ0 → ((𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻)) ↔ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))))

Proof of Theorem fseq1p1m1
StepHypRef Expression
1 simpr1 1067 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → 𝐹:(1...𝑁)⟶𝐴)
2 nn0p1nn 11332 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
32adantr 481 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → (𝑁 + 1) ∈ ℕ)
4 simpr2 1068 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → 𝐵𝐴)
5 fseq1p1m1.1 . . . . . . . . 9 𝐻 = {⟨(𝑁 + 1), 𝐵⟩}
6 fsng 6404 . . . . . . . . 9 (((𝑁 + 1) ∈ ℕ ∧ 𝐵𝐴) → (𝐻:{(𝑁 + 1)}⟶{𝐵} ↔ 𝐻 = {⟨(𝑁 + 1), 𝐵⟩}))
75, 6mpbiri 248 . . . . . . . 8 (((𝑁 + 1) ∈ ℕ ∧ 𝐵𝐴) → 𝐻:{(𝑁 + 1)}⟶{𝐵})
83, 4, 7syl2anc 693 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → 𝐻:{(𝑁 + 1)}⟶{𝐵})
94snssd 4340 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → {𝐵} ⊆ 𝐴)
108, 9fssd 6057 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → 𝐻:{(𝑁 + 1)}⟶𝐴)
11 fzp1disj 12399 . . . . . . 7 ((1...𝑁) ∩ {(𝑁 + 1)}) = ∅
1211a1i 11 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → ((1...𝑁) ∩ {(𝑁 + 1)}) = ∅)
13 fun2 6067 . . . . . 6 (((𝐹:(1...𝑁)⟶𝐴𝐻:{(𝑁 + 1)}⟶𝐴) ∧ ((1...𝑁) ∩ {(𝑁 + 1)}) = ∅) → (𝐹𝐻):((1...𝑁) ∪ {(𝑁 + 1)})⟶𝐴)
141, 10, 12, 13syl21anc 1325 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → (𝐹𝐻):((1...𝑁) ∪ {(𝑁 + 1)})⟶𝐴)
15 1z 11407 . . . . . . . 8 1 ∈ ℤ
16 simpl 473 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → 𝑁 ∈ ℕ0)
17 nn0uz 11722 . . . . . . . . . 10 0 = (ℤ‘0)
18 1m1e0 11089 . . . . . . . . . . 11 (1 − 1) = 0
1918fveq2i 6194 . . . . . . . . . 10 (ℤ‘(1 − 1)) = (ℤ‘0)
2017, 19eqtr4i 2647 . . . . . . . . 9 0 = (ℤ‘(1 − 1))
2116, 20syl6eleq 2711 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → 𝑁 ∈ (ℤ‘(1 − 1)))
22 fzsuc2 12398 . . . . . . . 8 ((1 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(1 − 1))) → (1...(𝑁 + 1)) = ((1...𝑁) ∪ {(𝑁 + 1)}))
2315, 21, 22sylancr 695 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → (1...(𝑁 + 1)) = ((1...𝑁) ∪ {(𝑁 + 1)}))
2423eqcomd 2628 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → ((1...𝑁) ∪ {(𝑁 + 1)}) = (1...(𝑁 + 1)))
2524feq2d 6031 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → ((𝐹𝐻):((1...𝑁) ∪ {(𝑁 + 1)})⟶𝐴 ↔ (𝐹𝐻):(1...(𝑁 + 1))⟶𝐴))
2614, 25mpbid 222 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → (𝐹𝐻):(1...(𝑁 + 1))⟶𝐴)
27 simpr3 1069 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → 𝐺 = (𝐹𝐻))
2827feq1d 6030 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → (𝐺:(1...(𝑁 + 1))⟶𝐴 ↔ (𝐹𝐻):(1...(𝑁 + 1))⟶𝐴))
2926, 28mpbird 247 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → 𝐺:(1...(𝑁 + 1))⟶𝐴)
30 ovex 6678 . . . . . 6 (𝑁 + 1) ∈ V
3130snid 4208 . . . . 5 (𝑁 + 1) ∈ {(𝑁 + 1)}
32 fvres 6207 . . . . 5 ((𝑁 + 1) ∈ {(𝑁 + 1)} → ((𝐺 ↾ {(𝑁 + 1)})‘(𝑁 + 1)) = (𝐺‘(𝑁 + 1)))
3331, 32ax-mp 5 . . . 4 ((𝐺 ↾ {(𝑁 + 1)})‘(𝑁 + 1)) = (𝐺‘(𝑁 + 1))
3427reseq1d 5395 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → (𝐺 ↾ {(𝑁 + 1)}) = ((𝐹𝐻) ↾ {(𝑁 + 1)}))
35 ffn 6045 . . . . . . . . . . 11 (𝐹:(1...𝑁)⟶𝐴𝐹 Fn (1...𝑁))
36 fnresdisj 6001 . . . . . . . . . . 11 (𝐹 Fn (1...𝑁) → (((1...𝑁) ∩ {(𝑁 + 1)}) = ∅ ↔ (𝐹 ↾ {(𝑁 + 1)}) = ∅))
371, 35, 363syl 18 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → (((1...𝑁) ∩ {(𝑁 + 1)}) = ∅ ↔ (𝐹 ↾ {(𝑁 + 1)}) = ∅))
3812, 37mpbid 222 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → (𝐹 ↾ {(𝑁 + 1)}) = ∅)
3938uneq1d 3766 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → ((𝐹 ↾ {(𝑁 + 1)}) ∪ (𝐻 ↾ {(𝑁 + 1)})) = (∅ ∪ (𝐻 ↾ {(𝑁 + 1)})))
40 resundir 5411 . . . . . . . 8 ((𝐹𝐻) ↾ {(𝑁 + 1)}) = ((𝐹 ↾ {(𝑁 + 1)}) ∪ (𝐻 ↾ {(𝑁 + 1)}))
41 uncom 3757 . . . . . . . . 9 (∅ ∪ (𝐻 ↾ {(𝑁 + 1)})) = ((𝐻 ↾ {(𝑁 + 1)}) ∪ ∅)
42 un0 3967 . . . . . . . . 9 ((𝐻 ↾ {(𝑁 + 1)}) ∪ ∅) = (𝐻 ↾ {(𝑁 + 1)})
4341, 42eqtr2i 2645 . . . . . . . 8 (𝐻 ↾ {(𝑁 + 1)}) = (∅ ∪ (𝐻 ↾ {(𝑁 + 1)}))
4439, 40, 433eqtr4g 2681 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → ((𝐹𝐻) ↾ {(𝑁 + 1)}) = (𝐻 ↾ {(𝑁 + 1)}))
45 ffn 6045 . . . . . . . 8 (𝐻:{(𝑁 + 1)}⟶𝐴𝐻 Fn {(𝑁 + 1)})
46 fnresdm 6000 . . . . . . . 8 (𝐻 Fn {(𝑁 + 1)} → (𝐻 ↾ {(𝑁 + 1)}) = 𝐻)
4710, 45, 463syl 18 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → (𝐻 ↾ {(𝑁 + 1)}) = 𝐻)
4834, 44, 473eqtrd 2660 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → (𝐺 ↾ {(𝑁 + 1)}) = 𝐻)
4948fveq1d 6193 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → ((𝐺 ↾ {(𝑁 + 1)})‘(𝑁 + 1)) = (𝐻‘(𝑁 + 1)))
505fveq1i 6192 . . . . . . 7 (𝐻‘(𝑁 + 1)) = ({⟨(𝑁 + 1), 𝐵⟩}‘(𝑁 + 1))
51 fvsng 6447 . . . . . . 7 (((𝑁 + 1) ∈ ℕ ∧ 𝐵𝐴) → ({⟨(𝑁 + 1), 𝐵⟩}‘(𝑁 + 1)) = 𝐵)
5250, 51syl5eq 2668 . . . . . 6 (((𝑁 + 1) ∈ ℕ ∧ 𝐵𝐴) → (𝐻‘(𝑁 + 1)) = 𝐵)
533, 4, 52syl2anc 693 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → (𝐻‘(𝑁 + 1)) = 𝐵)
5449, 53eqtrd 2656 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → ((𝐺 ↾ {(𝑁 + 1)})‘(𝑁 + 1)) = 𝐵)
5533, 54syl5eqr 2670 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → (𝐺‘(𝑁 + 1)) = 𝐵)
5627reseq1d 5395 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → (𝐺 ↾ (1...𝑁)) = ((𝐹𝐻) ↾ (1...𝑁)))
57 incom 3805 . . . . . . . 8 ({(𝑁 + 1)} ∩ (1...𝑁)) = ((1...𝑁) ∩ {(𝑁 + 1)})
5857, 12syl5eq 2668 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → ({(𝑁 + 1)} ∩ (1...𝑁)) = ∅)
59 ffn 6045 . . . . . . . 8 (𝐻:{(𝑁 + 1)}⟶{𝐵} → 𝐻 Fn {(𝑁 + 1)})
60 fnresdisj 6001 . . . . . . . 8 (𝐻 Fn {(𝑁 + 1)} → (({(𝑁 + 1)} ∩ (1...𝑁)) = ∅ ↔ (𝐻 ↾ (1...𝑁)) = ∅))
618, 59, 603syl 18 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → (({(𝑁 + 1)} ∩ (1...𝑁)) = ∅ ↔ (𝐻 ↾ (1...𝑁)) = ∅))
6258, 61mpbid 222 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → (𝐻 ↾ (1...𝑁)) = ∅)
6362uneq2d 3767 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → ((𝐹 ↾ (1...𝑁)) ∪ (𝐻 ↾ (1...𝑁))) = ((𝐹 ↾ (1...𝑁)) ∪ ∅))
64 resundir 5411 . . . . 5 ((𝐹𝐻) ↾ (1...𝑁)) = ((𝐹 ↾ (1...𝑁)) ∪ (𝐻 ↾ (1...𝑁)))
65 un0 3967 . . . . . 6 ((𝐹 ↾ (1...𝑁)) ∪ ∅) = (𝐹 ↾ (1...𝑁))
6665eqcomi 2631 . . . . 5 (𝐹 ↾ (1...𝑁)) = ((𝐹 ↾ (1...𝑁)) ∪ ∅)
6763, 64, 663eqtr4g 2681 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → ((𝐹𝐻) ↾ (1...𝑁)) = (𝐹 ↾ (1...𝑁)))
68 fnresdm 6000 . . . . 5 (𝐹 Fn (1...𝑁) → (𝐹 ↾ (1...𝑁)) = 𝐹)
691, 35, 683syl 18 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → (𝐹 ↾ (1...𝑁)) = 𝐹)
7056, 67, 693eqtrrd 2661 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → 𝐹 = (𝐺 ↾ (1...𝑁)))
7129, 55, 703jca 1242 . 2 ((𝑁 ∈ ℕ0 ∧ (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻))) → (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁))))
72 simpr1 1067 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝐺:(1...(𝑁 + 1))⟶𝐴)
73 fzssp1 12384 . . . . 5 (1...𝑁) ⊆ (1...(𝑁 + 1))
74 fssres 6070 . . . . 5 ((𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (1...𝑁) ⊆ (1...(𝑁 + 1))) → (𝐺 ↾ (1...𝑁)):(1...𝑁)⟶𝐴)
7572, 73, 74sylancl 694 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐺 ↾ (1...𝑁)):(1...𝑁)⟶𝐴)
76 simpr3 1069 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝐹 = (𝐺 ↾ (1...𝑁)))
7776feq1d 6030 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐹:(1...𝑁)⟶𝐴 ↔ (𝐺 ↾ (1...𝑁)):(1...𝑁)⟶𝐴))
7875, 77mpbird 247 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝐹:(1...𝑁)⟶𝐴)
79 simpr2 1068 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐺‘(𝑁 + 1)) = 𝐵)
802adantr 481 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝑁 + 1) ∈ ℕ)
81 nnuz 11723 . . . . . . 7 ℕ = (ℤ‘1)
8280, 81syl6eleq 2711 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝑁 + 1) ∈ (ℤ‘1))
83 eluzfz2 12349 . . . . . 6 ((𝑁 + 1) ∈ (ℤ‘1) → (𝑁 + 1) ∈ (1...(𝑁 + 1)))
8482, 83syl 17 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝑁 + 1) ∈ (1...(𝑁 + 1)))
8572, 84ffvelrnd 6360 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐺‘(𝑁 + 1)) ∈ 𝐴)
8679, 85eqeltrrd 2702 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝐵𝐴)
87 ffn 6045 . . . . . . . . 9 (𝐺:(1...(𝑁 + 1))⟶𝐴𝐺 Fn (1...(𝑁 + 1)))
8872, 87syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝐺 Fn (1...(𝑁 + 1)))
89 fnressn 6425 . . . . . . . 8 ((𝐺 Fn (1...(𝑁 + 1)) ∧ (𝑁 + 1) ∈ (1...(𝑁 + 1))) → (𝐺 ↾ {(𝑁 + 1)}) = {⟨(𝑁 + 1), (𝐺‘(𝑁 + 1))⟩})
9088, 84, 89syl2anc 693 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐺 ↾ {(𝑁 + 1)}) = {⟨(𝑁 + 1), (𝐺‘(𝑁 + 1))⟩})
91 opeq2 4403 . . . . . . . . 9 ((𝐺‘(𝑁 + 1)) = 𝐵 → ⟨(𝑁 + 1), (𝐺‘(𝑁 + 1))⟩ = ⟨(𝑁 + 1), 𝐵⟩)
9291sneqd 4189 . . . . . . . 8 ((𝐺‘(𝑁 + 1)) = 𝐵 → {⟨(𝑁 + 1), (𝐺‘(𝑁 + 1))⟩} = {⟨(𝑁 + 1), 𝐵⟩})
9379, 92syl 17 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → {⟨(𝑁 + 1), (𝐺‘(𝑁 + 1))⟩} = {⟨(𝑁 + 1), 𝐵⟩})
9490, 93eqtrd 2656 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐺 ↾ {(𝑁 + 1)}) = {⟨(𝑁 + 1), 𝐵⟩})
9594, 5syl6reqr 2675 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝐻 = (𝐺 ↾ {(𝑁 + 1)}))
9676, 95uneq12d 3768 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐹𝐻) = ((𝐺 ↾ (1...𝑁)) ∪ (𝐺 ↾ {(𝑁 + 1)})))
97 simpl 473 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝑁 ∈ ℕ0)
9897, 20syl6eleq 2711 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝑁 ∈ (ℤ‘(1 − 1)))
9915, 98, 22sylancr 695 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → (1...(𝑁 + 1)) = ((1...𝑁) ∪ {(𝑁 + 1)}))
10099reseq2d 5396 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐺 ↾ (1...(𝑁 + 1))) = (𝐺 ↾ ((1...𝑁) ∪ {(𝑁 + 1)})))
101 resundi 5410 . . . . 5 (𝐺 ↾ ((1...𝑁) ∪ {(𝑁 + 1)})) = ((𝐺 ↾ (1...𝑁)) ∪ (𝐺 ↾ {(𝑁 + 1)}))
102100, 101syl6req 2673 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → ((𝐺 ↾ (1...𝑁)) ∪ (𝐺 ↾ {(𝑁 + 1)})) = (𝐺 ↾ (1...(𝑁 + 1))))
103 fnresdm 6000 . . . . 5 (𝐺 Fn (1...(𝑁 + 1)) → (𝐺 ↾ (1...(𝑁 + 1))) = 𝐺)
10472, 87, 1033syl 18 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐺 ↾ (1...(𝑁 + 1))) = 𝐺)
10596, 102, 1043eqtrrd 2661 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → 𝐺 = (𝐹𝐻))
10678, 86, 1053jca 1242 . 2 ((𝑁 ∈ ℕ0 ∧ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))) → (𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻)))
10771, 106impbida 877 1 (𝑁 ∈ ℕ0 → ((𝐹:(1...𝑁)⟶𝐴𝐵𝐴𝐺 = (𝐹𝐻)) ↔ (𝐺:(1...(𝑁 + 1))⟶𝐴 ∧ (𝐺‘(𝑁 + 1)) = 𝐵𝐹 = (𝐺 ↾ (1...𝑁)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  cun 3572  cin 3573  wss 3574  c0 3915  {csn 4177  cop 4183  cres 5116   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  0cc0 9936  1c1 9937   + caddc 9939  cmin 10266  cn 11020  0cn0 11292  cz 11377  cuz 11687  ...cfz 12326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327
This theorem is referenced by:  fseq1m1p1  12415
  Copyright terms: Public domain W3C validator