| Step | Hyp | Ref
| Expression |
| 1 | | resundir 5411 |
. . . . . 6
⊢
((((rec((𝑥 ∈ V
↦ (𝑥 + 1)), 0)
↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞}))
↾ Fin) = ((((rec((𝑥
∈ V ↦ (𝑥 + 1)),
0) ↾ ω) ∘ card) ↾ Fin) ∪ (((V ∖ Fin) ×
{+∞}) ↾ Fin)) |
| 2 | | eqid 2622 |
. . . . . . . . . 10
⊢
(rec((𝑥 ∈ V
↦ (𝑥 + 1)), 0)
↾ ω) = (rec((𝑥
∈ V ↦ (𝑥 + 1)),
0) ↾ ω) |
| 3 | | eqid 2622 |
. . . . . . . . . 10
⊢
((rec((𝑥 ∈ V
↦ (𝑥 + 1)), 0)
↾ ω) ∘ card) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘
card) |
| 4 | 2, 3 | hashkf 13119 |
. . . . . . . . 9
⊢
((rec((𝑥 ∈ V
↦ (𝑥 + 1)), 0)
↾ ω) ∘ card):Fin⟶ℕ0 |
| 5 | | ffn 6045 |
. . . . . . . . 9
⊢
(((rec((𝑥 ∈ V
↦ (𝑥 + 1)), 0)
↾ ω) ∘ card):Fin⟶ℕ0 →
((rec((𝑥 ∈ V ↦
(𝑥 + 1)), 0) ↾
ω) ∘ card) Fn Fin) |
| 6 | | fnresdm 6000 |
. . . . . . . . 9
⊢
(((rec((𝑥 ∈ V
↦ (𝑥 + 1)), 0)
↾ ω) ∘ card) Fn Fin → (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card)
↾ Fin) = ((rec((𝑥
∈ V ↦ (𝑥 + 1)),
0) ↾ ω) ∘ card)) |
| 7 | 4, 5, 6 | mp2b 10 |
. . . . . . . 8
⊢
(((rec((𝑥 ∈ V
↦ (𝑥 + 1)), 0)
↾ ω) ∘ card) ↾ Fin) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘
card) |
| 8 | | incom 3805 |
. . . . . . . . . 10
⊢ ((V
∖ Fin) ∩ Fin) = (Fin ∩ (V ∖ Fin)) |
| 9 | | disjdif 4040 |
. . . . . . . . . 10
⊢ (Fin
∩ (V ∖ Fin)) = ∅ |
| 10 | 8, 9 | eqtri 2644 |
. . . . . . . . 9
⊢ ((V
∖ Fin) ∩ Fin) = ∅ |
| 11 | | pnfex 10093 |
. . . . . . . . . . 11
⊢ +∞
∈ V |
| 12 | 11 | fconst 6091 |
. . . . . . . . . 10
⊢ ((V
∖ Fin) × {+∞}):(V ∖
Fin)⟶{+∞} |
| 13 | | ffn 6045 |
. . . . . . . . . 10
⊢ (((V
∖ Fin) × {+∞}):(V ∖ Fin)⟶{+∞} → ((V
∖ Fin) × {+∞}) Fn (V ∖ Fin)) |
| 14 | | fnresdisj 6001 |
. . . . . . . . . 10
⊢ (((V
∖ Fin) × {+∞}) Fn (V ∖ Fin) → (((V ∖ Fin)
∩ Fin) = ∅ ↔ (((V ∖ Fin) × {+∞}) ↾ Fin)
= ∅)) |
| 15 | 12, 13, 14 | mp2b 10 |
. . . . . . . . 9
⊢ (((V
∖ Fin) ∩ Fin) = ∅ ↔ (((V ∖ Fin) × {+∞})
↾ Fin) = ∅) |
| 16 | 10, 15 | mpbi 220 |
. . . . . . . 8
⊢ (((V
∖ Fin) × {+∞}) ↾ Fin) = ∅ |
| 17 | 7, 16 | uneq12i 3765 |
. . . . . . 7
⊢
((((rec((𝑥 ∈ V
↦ (𝑥 + 1)), 0)
↾ ω) ∘ card) ↾ Fin) ∪ (((V ∖ Fin) ×
{+∞}) ↾ Fin)) = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card)
∪ ∅) |
| 18 | | un0 3967 |
. . . . . . 7
⊢
(((rec((𝑥 ∈ V
↦ (𝑥 + 1)), 0)
↾ ω) ∘ card) ∪ ∅) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘
card) |
| 19 | 17, 18 | eqtri 2644 |
. . . . . 6
⊢
((((rec((𝑥 ∈ V
↦ (𝑥 + 1)), 0)
↾ ω) ∘ card) ↾ Fin) ∪ (((V ∖ Fin) ×
{+∞}) ↾ Fin)) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘
card) |
| 20 | 1, 19 | eqtri 2644 |
. . . . 5
⊢
((((rec((𝑥 ∈ V
↦ (𝑥 + 1)), 0)
↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞}))
↾ Fin) = ((rec((𝑥
∈ V ↦ (𝑥 + 1)),
0) ↾ ω) ∘ card) |
| 21 | | df-hash 13118 |
. . . . . 6
⊢ # =
(((rec((𝑥 ∈ V ↦
(𝑥 + 1)), 0) ↾
ω) ∘ card) ∪ ((V ∖ Fin) ×
{+∞})) |
| 22 | 21 | reseq1i 5392 |
. . . . 5
⊢ (#
↾ Fin) = ((((rec((𝑥
∈ V ↦ (𝑥 + 1)),
0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞}))
↾ Fin) |
| 23 | | hashgval.1 |
. . . . . 6
⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) |
| 24 | 23 | coeq1i 5281 |
. . . . 5
⊢ (𝐺 ∘ card) = ((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω)
∘ card) |
| 25 | 20, 22, 24 | 3eqtr4i 2654 |
. . . 4
⊢ (#
↾ Fin) = (𝐺 ∘
card) |
| 26 | 25 | fveq1i 6192 |
. . 3
⊢ ((#
↾ Fin)‘𝐴) =
((𝐺 ∘
card)‘𝐴) |
| 27 | | cardf2 8769 |
. . . . 5
⊢
card:{𝑥 ∣
∃𝑦 ∈ On 𝑦 ≈ 𝑥}⟶On |
| 28 | | ffun 6048 |
. . . . 5
⊢
(card:{𝑥 ∣
∃𝑦 ∈ On 𝑦 ≈ 𝑥}⟶On → Fun card) |
| 29 | 27, 28 | ax-mp 5 |
. . . 4
⊢ Fun
card |
| 30 | | finnum 8774 |
. . . 4
⊢ (𝐴 ∈ Fin → 𝐴 ∈ dom
card) |
| 31 | | fvco 6274 |
. . . 4
⊢ ((Fun
card ∧ 𝐴 ∈ dom
card) → ((𝐺 ∘
card)‘𝐴) = (𝐺‘(card‘𝐴))) |
| 32 | 29, 30, 31 | sylancr 695 |
. . 3
⊢ (𝐴 ∈ Fin → ((𝐺 ∘ card)‘𝐴) = (𝐺‘(card‘𝐴))) |
| 33 | 26, 32 | syl5eq 2668 |
. 2
⊢ (𝐴 ∈ Fin → ((# ↾
Fin)‘𝐴) = (𝐺‘(card‘𝐴))) |
| 34 | | fvres 6207 |
. 2
⊢ (𝐴 ∈ Fin → ((# ↾
Fin)‘𝐴) =
(#‘𝐴)) |
| 35 | 33, 34 | eqtr3d 2658 |
1
⊢ (𝐴 ∈ Fin → (𝐺‘(card‘𝐴)) = (#‘𝐴)) |