Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwssplit4 Structured version   Visualization version   GIF version

Theorem pwssplit4 37659
Description: Splitting for structure powers 4: maps isomorphically onto the other half. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Hypotheses
Ref Expression
pwssplit4.e 𝐸 = (𝑅s (𝐴𝐵))
pwssplit4.g 𝐺 = (Base‘𝐸)
pwssplit4.z 0 = (0g𝑅)
pwssplit4.k 𝐾 = {𝑦𝐺 ∣ (𝑦𝐴) = (𝐴 × { 0 })}
pwssplit4.f 𝐹 = (𝑥𝐾 ↦ (𝑥𝐵))
pwssplit4.c 𝐶 = (𝑅s 𝐴)
pwssplit4.d 𝐷 = (𝑅s 𝐵)
pwssplit4.l 𝐿 = (𝐸s 𝐾)
Assertion
Ref Expression
pwssplit4 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → 𝐹 ∈ (𝐿 LMIso 𝐷))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐸,𝑦   𝑥,𝐺,𝑦   𝑥,𝐾   𝑥,𝐿   𝑥,𝑅,𝑦   𝑥,𝑉,𝑦   𝑥, 0 ,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐾(𝑦)   𝐿(𝑦)

Proof of Theorem pwssplit4
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 pwssplit4.f . . . 4 𝐹 = (𝑥𝐾 ↦ (𝑥𝐵))
2 pwssplit4.k . . . . . 6 𝐾 = {𝑦𝐺 ∣ (𝑦𝐴) = (𝐴 × { 0 })}
3 ssrab2 3687 . . . . . 6 {𝑦𝐺 ∣ (𝑦𝐴) = (𝐴 × { 0 })} ⊆ 𝐺
42, 3eqsstri 3635 . . . . 5 𝐾𝐺
5 resmpt 5449 . . . . 5 (𝐾𝐺 → ((𝑥𝐺 ↦ (𝑥𝐵)) ↾ 𝐾) = (𝑥𝐾 ↦ (𝑥𝐵)))
64, 5ax-mp 5 . . . 4 ((𝑥𝐺 ↦ (𝑥𝐵)) ↾ 𝐾) = (𝑥𝐾 ↦ (𝑥𝐵))
71, 6eqtr4i 2647 . . 3 𝐹 = ((𝑥𝐺 ↦ (𝑥𝐵)) ↾ 𝐾)
8 ssun2 3777 . . . . . 6 𝐵 ⊆ (𝐴𝐵)
98a1i 11 . . . . 5 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → 𝐵 ⊆ (𝐴𝐵))
10 pwssplit4.e . . . . . 6 𝐸 = (𝑅s (𝐴𝐵))
11 pwssplit4.d . . . . . 6 𝐷 = (𝑅s 𝐵)
12 pwssplit4.g . . . . . 6 𝐺 = (Base‘𝐸)
13 eqid 2622 . . . . . 6 (Base‘𝐷) = (Base‘𝐷)
14 eqid 2622 . . . . . 6 (𝑥𝐺 ↦ (𝑥𝐵)) = (𝑥𝐺 ↦ (𝑥𝐵))
1510, 11, 12, 13, 14pwssplit3 19061 . . . . 5 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉𝐵 ⊆ (𝐴𝐵)) → (𝑥𝐺 ↦ (𝑥𝐵)) ∈ (𝐸 LMHom 𝐷))
169, 15syld3an3 1371 . . . 4 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → (𝑥𝐺 ↦ (𝑥𝐵)) ∈ (𝐸 LMHom 𝐷))
17 simp1 1061 . . . . . . . . . 10 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → 𝑅 ∈ LMod)
18 lmodgrp 18870 . . . . . . . . . 10 (𝑅 ∈ LMod → 𝑅 ∈ Grp)
19 grpmnd 17429 . . . . . . . . . 10 (𝑅 ∈ Grp → 𝑅 ∈ Mnd)
2017, 18, 193syl 18 . . . . . . . . 9 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → 𝑅 ∈ Mnd)
21 ssun1 3776 . . . . . . . . . . 11 𝐴 ⊆ (𝐴𝐵)
22 ssexg 4804 . . . . . . . . . . 11 ((𝐴 ⊆ (𝐴𝐵) ∧ (𝐴𝐵) ∈ 𝑉) → 𝐴 ∈ V)
2321, 22mpan 706 . . . . . . . . . 10 ((𝐴𝐵) ∈ 𝑉𝐴 ∈ V)
24233ad2ant2 1083 . . . . . . . . 9 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → 𝐴 ∈ V)
25 pwssplit4.c . . . . . . . . . 10 𝐶 = (𝑅s 𝐴)
26 pwssplit4.z . . . . . . . . . 10 0 = (0g𝑅)
2725, 26pws0g 17326 . . . . . . . . 9 ((𝑅 ∈ Mnd ∧ 𝐴 ∈ V) → (𝐴 × { 0 }) = (0g𝐶))
2820, 24, 27syl2anc 693 . . . . . . . 8 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → (𝐴 × { 0 }) = (0g𝐶))
2928eqeq2d 2632 . . . . . . 7 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → ((𝑦𝐴) = (𝐴 × { 0 }) ↔ (𝑦𝐴) = (0g𝐶)))
3029rabbidv 3189 . . . . . 6 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → {𝑦𝐺 ∣ (𝑦𝐴) = (𝐴 × { 0 })} = {𝑦𝐺 ∣ (𝑦𝐴) = (0g𝐶)})
312, 30syl5eq 2668 . . . . 5 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → 𝐾 = {𝑦𝐺 ∣ (𝑦𝐴) = (0g𝐶)})
3221a1i 11 . . . . . . 7 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → 𝐴 ⊆ (𝐴𝐵))
33 eqid 2622 . . . . . . . 8 (Base‘𝐶) = (Base‘𝐶)
34 eqid 2622 . . . . . . . 8 (𝑦𝐺 ↦ (𝑦𝐴)) = (𝑦𝐺 ↦ (𝑦𝐴))
3510, 25, 12, 33, 34pwssplit3 19061 . . . . . . 7 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉𝐴 ⊆ (𝐴𝐵)) → (𝑦𝐺 ↦ (𝑦𝐴)) ∈ (𝐸 LMHom 𝐶))
3632, 35syld3an3 1371 . . . . . 6 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → (𝑦𝐺 ↦ (𝑦𝐴)) ∈ (𝐸 LMHom 𝐶))
37 fvex 6201 . . . . . . . . 9 (0g𝐶) ∈ V
3834mptiniseg 5629 . . . . . . . . 9 ((0g𝐶) ∈ V → ((𝑦𝐺 ↦ (𝑦𝐴)) “ {(0g𝐶)}) = {𝑦𝐺 ∣ (𝑦𝐴) = (0g𝐶)})
3937, 38ax-mp 5 . . . . . . . 8 ((𝑦𝐺 ↦ (𝑦𝐴)) “ {(0g𝐶)}) = {𝑦𝐺 ∣ (𝑦𝐴) = (0g𝐶)}
4039eqcomi 2631 . . . . . . 7 {𝑦𝐺 ∣ (𝑦𝐴) = (0g𝐶)} = ((𝑦𝐺 ↦ (𝑦𝐴)) “ {(0g𝐶)})
41 eqid 2622 . . . . . . 7 (0g𝐶) = (0g𝐶)
42 eqid 2622 . . . . . . 7 (LSubSp‘𝐸) = (LSubSp‘𝐸)
4340, 41, 42lmhmkerlss 19051 . . . . . 6 ((𝑦𝐺 ↦ (𝑦𝐴)) ∈ (𝐸 LMHom 𝐶) → {𝑦𝐺 ∣ (𝑦𝐴) = (0g𝐶)} ∈ (LSubSp‘𝐸))
4436, 43syl 17 . . . . 5 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → {𝑦𝐺 ∣ (𝑦𝐴) = (0g𝐶)} ∈ (LSubSp‘𝐸))
4531, 44eqeltrd 2701 . . . 4 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → 𝐾 ∈ (LSubSp‘𝐸))
46 pwssplit4.l . . . . 5 𝐿 = (𝐸s 𝐾)
4742, 46reslmhm 19052 . . . 4 (((𝑥𝐺 ↦ (𝑥𝐵)) ∈ (𝐸 LMHom 𝐷) ∧ 𝐾 ∈ (LSubSp‘𝐸)) → ((𝑥𝐺 ↦ (𝑥𝐵)) ↾ 𝐾) ∈ (𝐿 LMHom 𝐷))
4816, 45, 47syl2anc 693 . . 3 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → ((𝑥𝐺 ↦ (𝑥𝐵)) ↾ 𝐾) ∈ (𝐿 LMHom 𝐷))
497, 48syl5eqel 2705 . 2 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → 𝐹 ∈ (𝐿 LMHom 𝐷))
501fvtresfn 6284 . . . . . . 7 (𝑎𝐾 → (𝐹𝑎) = (𝑎𝐵))
51 ssexg 4804 . . . . . . . . . . 11 ((𝐵 ⊆ (𝐴𝐵) ∧ (𝐴𝐵) ∈ 𝑉) → 𝐵 ∈ V)
528, 51mpan 706 . . . . . . . . . 10 ((𝐴𝐵) ∈ 𝑉𝐵 ∈ V)
53523ad2ant2 1083 . . . . . . . . 9 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → 𝐵 ∈ V)
5411, 26pws0g 17326 . . . . . . . . 9 ((𝑅 ∈ Mnd ∧ 𝐵 ∈ V) → (𝐵 × { 0 }) = (0g𝐷))
5520, 53, 54syl2anc 693 . . . . . . . 8 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → (𝐵 × { 0 }) = (0g𝐷))
5655eqcomd 2628 . . . . . . 7 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → (0g𝐷) = (𝐵 × { 0 }))
5750, 56eqeqan12rd 2640 . . . . . 6 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎𝐾) → ((𝐹𝑎) = (0g𝐷) ↔ (𝑎𝐵) = (𝐵 × { 0 })))
58 reseq1 5390 . . . . . . . . . 10 (𝑦 = 𝑎 → (𝑦𝐴) = (𝑎𝐴))
5958eqeq1d 2624 . . . . . . . . 9 (𝑦 = 𝑎 → ((𝑦𝐴) = (𝐴 × { 0 }) ↔ (𝑎𝐴) = (𝐴 × { 0 })))
6059, 2elrab2 3366 . . . . . . . 8 (𝑎𝐾 ↔ (𝑎𝐺 ∧ (𝑎𝐴) = (𝐴 × { 0 })))
61 uneq12 3762 . . . . . . . . . . . . 13 (((𝑎𝐴) = (𝐴 × { 0 }) ∧ (𝑎𝐵) = (𝐵 × { 0 })) → ((𝑎𝐴) ∪ (𝑎𝐵)) = ((𝐴 × { 0 }) ∪ (𝐵 × { 0 })))
62 resundi 5410 . . . . . . . . . . . . 13 (𝑎 ↾ (𝐴𝐵)) = ((𝑎𝐴) ∪ (𝑎𝐵))
63 xpundir 5172 . . . . . . . . . . . . 13 ((𝐴𝐵) × { 0 }) = ((𝐴 × { 0 }) ∪ (𝐵 × { 0 }))
6461, 62, 633eqtr4g 2681 . . . . . . . . . . . 12 (((𝑎𝐴) = (𝐴 × { 0 }) ∧ (𝑎𝐵) = (𝐵 × { 0 })) → (𝑎 ↾ (𝐴𝐵)) = ((𝐴𝐵) × { 0 }))
6564adantll 750 . . . . . . . . . . 11 (((𝑎𝐺 ∧ (𝑎𝐴) = (𝐴 × { 0 })) ∧ (𝑎𝐵) = (𝐵 × { 0 })) → (𝑎 ↾ (𝐴𝐵)) = ((𝐴𝐵) × { 0 }))
6665adantl 482 . . . . . . . . . 10 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ ((𝑎𝐺 ∧ (𝑎𝐴) = (𝐴 × { 0 })) ∧ (𝑎𝐵) = (𝐵 × { 0 }))) → (𝑎 ↾ (𝐴𝐵)) = ((𝐴𝐵) × { 0 }))
67 eqid 2622 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
68 simpl1 1064 . . . . . . . . . . . 12 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ ((𝑎𝐺 ∧ (𝑎𝐴) = (𝐴 × { 0 })) ∧ (𝑎𝐵) = (𝐵 × { 0 }))) → 𝑅 ∈ LMod)
69 simp2 1062 . . . . . . . . . . . . 13 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ∈ 𝑉)
7069adantr 481 . . . . . . . . . . . 12 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ ((𝑎𝐺 ∧ (𝑎𝐴) = (𝐴 × { 0 })) ∧ (𝑎𝐵) = (𝐵 × { 0 }))) → (𝐴𝐵) ∈ 𝑉)
71 simprll 802 . . . . . . . . . . . 12 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ ((𝑎𝐺 ∧ (𝑎𝐴) = (𝐴 × { 0 })) ∧ (𝑎𝐵) = (𝐵 × { 0 }))) → 𝑎𝐺)
7210, 67, 12, 68, 70, 71pwselbas 16149 . . . . . . . . . . 11 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ ((𝑎𝐺 ∧ (𝑎𝐴) = (𝐴 × { 0 })) ∧ (𝑎𝐵) = (𝐵 × { 0 }))) → 𝑎:(𝐴𝐵)⟶(Base‘𝑅))
73 ffn 6045 . . . . . . . . . . 11 (𝑎:(𝐴𝐵)⟶(Base‘𝑅) → 𝑎 Fn (𝐴𝐵))
74 fnresdm 6000 . . . . . . . . . . 11 (𝑎 Fn (𝐴𝐵) → (𝑎 ↾ (𝐴𝐵)) = 𝑎)
7572, 73, 743syl 18 . . . . . . . . . 10 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ ((𝑎𝐺 ∧ (𝑎𝐴) = (𝐴 × { 0 })) ∧ (𝑎𝐵) = (𝐵 × { 0 }))) → (𝑎 ↾ (𝐴𝐵)) = 𝑎)
7610, 26pws0g 17326 . . . . . . . . . . . . 13 ((𝑅 ∈ Mnd ∧ (𝐴𝐵) ∈ 𝑉) → ((𝐴𝐵) × { 0 }) = (0g𝐸))
7720, 69, 76syl2anc 693 . . . . . . . . . . . 12 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → ((𝐴𝐵) × { 0 }) = (0g𝐸))
7810pwslmod 18970 . . . . . . . . . . . . . . 15 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉) → 𝐸 ∈ LMod)
79783adant3 1081 . . . . . . . . . . . . . 14 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → 𝐸 ∈ LMod)
8042lsssubg 18957 . . . . . . . . . . . . . 14 ((𝐸 ∈ LMod ∧ 𝐾 ∈ (LSubSp‘𝐸)) → 𝐾 ∈ (SubGrp‘𝐸))
8179, 45, 80syl2anc 693 . . . . . . . . . . . . 13 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → 𝐾 ∈ (SubGrp‘𝐸))
82 eqid 2622 . . . . . . . . . . . . . 14 (0g𝐸) = (0g𝐸)
8346, 82subg0 17600 . . . . . . . . . . . . 13 (𝐾 ∈ (SubGrp‘𝐸) → (0g𝐸) = (0g𝐿))
8481, 83syl 17 . . . . . . . . . . . 12 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → (0g𝐸) = (0g𝐿))
8577, 84eqtrd 2656 . . . . . . . . . . 11 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → ((𝐴𝐵) × { 0 }) = (0g𝐿))
8685adantr 481 . . . . . . . . . 10 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ ((𝑎𝐺 ∧ (𝑎𝐴) = (𝐴 × { 0 })) ∧ (𝑎𝐵) = (𝐵 × { 0 }))) → ((𝐴𝐵) × { 0 }) = (0g𝐿))
8766, 75, 863eqtr3d 2664 . . . . . . . . 9 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ ((𝑎𝐺 ∧ (𝑎𝐴) = (𝐴 × { 0 })) ∧ (𝑎𝐵) = (𝐵 × { 0 }))) → 𝑎 = (0g𝐿))
8887exp32 631 . . . . . . . 8 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → ((𝑎𝐺 ∧ (𝑎𝐴) = (𝐴 × { 0 })) → ((𝑎𝐵) = (𝐵 × { 0 }) → 𝑎 = (0g𝐿))))
8960, 88syl5bi 232 . . . . . . 7 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → (𝑎𝐾 → ((𝑎𝐵) = (𝐵 × { 0 }) → 𝑎 = (0g𝐿))))
9089imp 445 . . . . . 6 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎𝐾) → ((𝑎𝐵) = (𝐵 × { 0 }) → 𝑎 = (0g𝐿)))
9157, 90sylbid 230 . . . . 5 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎𝐾) → ((𝐹𝑎) = (0g𝐷) → 𝑎 = (0g𝐿)))
9291ralrimiva 2966 . . . 4 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → ∀𝑎𝐾 ((𝐹𝑎) = (0g𝐷) → 𝑎 = (0g𝐿)))
93 lmghm 19031 . . . . 5 (𝐹 ∈ (𝐿 LMHom 𝐷) → 𝐹 ∈ (𝐿 GrpHom 𝐷))
9446, 12ressbas2 15931 . . . . . . 7 (𝐾𝐺𝐾 = (Base‘𝐿))
954, 94ax-mp 5 . . . . . 6 𝐾 = (Base‘𝐿)
96 eqid 2622 . . . . . 6 (0g𝐿) = (0g𝐿)
97 eqid 2622 . . . . . 6 (0g𝐷) = (0g𝐷)
9895, 13, 96, 97ghmf1 17689 . . . . 5 (𝐹 ∈ (𝐿 GrpHom 𝐷) → (𝐹:𝐾1-1→(Base‘𝐷) ↔ ∀𝑎𝐾 ((𝐹𝑎) = (0g𝐷) → 𝑎 = (0g𝐿))))
9949, 93, 983syl 18 . . . 4 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → (𝐹:𝐾1-1→(Base‘𝐷) ↔ ∀𝑎𝐾 ((𝐹𝑎) = (0g𝐷) → 𝑎 = (0g𝐿))))
10092, 99mpbird 247 . . 3 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → 𝐹:𝐾1-1→(Base‘𝐷))
101 eqid 2622 . . . . . 6 (Base‘𝐿) = (Base‘𝐿)
102101, 13lmhmf 19034 . . . . 5 (𝐹 ∈ (𝐿 LMHom 𝐷) → 𝐹:(Base‘𝐿)⟶(Base‘𝐷))
103 frn 6053 . . . . 5 (𝐹:(Base‘𝐿)⟶(Base‘𝐷) → ran 𝐹 ⊆ (Base‘𝐷))
10449, 102, 1033syl 18 . . . 4 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → ran 𝐹 ⊆ (Base‘𝐷))
10511, 67, 13pwselbasb 16148 . . . . . . . . . . . . . . 15 ((𝑅 ∈ LMod ∧ 𝐵 ∈ V) → (𝑎 ∈ (Base‘𝐷) ↔ 𝑎:𝐵⟶(Base‘𝑅)))
10617, 53, 105syl2anc 693 . . . . . . . . . . . . . 14 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → (𝑎 ∈ (Base‘𝐷) ↔ 𝑎:𝐵⟶(Base‘𝑅)))
107106biimpa 501 . . . . . . . . . . . . 13 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → 𝑎:𝐵⟶(Base‘𝑅))
108 fvex 6201 . . . . . . . . . . . . . . . . 17 (0g𝑅) ∈ V
10926, 108eqeltri 2697 . . . . . . . . . . . . . . . 16 0 ∈ V
110109fconst 6091 . . . . . . . . . . . . . . 15 (𝐴 × { 0 }):𝐴⟶{ 0 }
111110a1i 11 . . . . . . . . . . . . . 14 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → (𝐴 × { 0 }):𝐴⟶{ 0 })
11220adantr 481 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → 𝑅 ∈ Mnd)
11367, 26mndidcl 17308 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Mnd → 0 ∈ (Base‘𝑅))
114112, 113syl 17 . . . . . . . . . . . . . . 15 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → 0 ∈ (Base‘𝑅))
115114snssd 4340 . . . . . . . . . . . . . 14 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → { 0 } ⊆ (Base‘𝑅))
116111, 115fssd 6057 . . . . . . . . . . . . 13 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → (𝐴 × { 0 }):𝐴⟶(Base‘𝑅))
117 incom 3805 . . . . . . . . . . . . . . 15 (𝐵𝐴) = (𝐴𝐵)
118 simp3 1063 . . . . . . . . . . . . . . 15 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) = ∅)
119117, 118syl5eq 2668 . . . . . . . . . . . . . 14 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → (𝐵𝐴) = ∅)
120119adantr 481 . . . . . . . . . . . . 13 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → (𝐵𝐴) = ∅)
121 fun 6066 . . . . . . . . . . . . 13 (((𝑎:𝐵⟶(Base‘𝑅) ∧ (𝐴 × { 0 }):𝐴⟶(Base‘𝑅)) ∧ (𝐵𝐴) = ∅) → (𝑎 ∪ (𝐴 × { 0 })):(𝐵𝐴)⟶((Base‘𝑅) ∪ (Base‘𝑅)))
122107, 116, 120, 121syl21anc 1325 . . . . . . . . . . . 12 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → (𝑎 ∪ (𝐴 × { 0 })):(𝐵𝐴)⟶((Base‘𝑅) ∪ (Base‘𝑅)))
123 uncom 3757 . . . . . . . . . . . . 13 (𝐵𝐴) = (𝐴𝐵)
124 unidm 3756 . . . . . . . . . . . . 13 ((Base‘𝑅) ∪ (Base‘𝑅)) = (Base‘𝑅)
125123, 124feq23i 6039 . . . . . . . . . . . 12 ((𝑎 ∪ (𝐴 × { 0 })):(𝐵𝐴)⟶((Base‘𝑅) ∪ (Base‘𝑅)) ↔ (𝑎 ∪ (𝐴 × { 0 })):(𝐴𝐵)⟶(Base‘𝑅))
126122, 125sylib 208 . . . . . . . . . . 11 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → (𝑎 ∪ (𝐴 × { 0 })):(𝐴𝐵)⟶(Base‘𝑅))
12710, 67, 12pwselbasb 16148 . . . . . . . . . . . . 13 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉) → ((𝑎 ∪ (𝐴 × { 0 })) ∈ 𝐺 ↔ (𝑎 ∪ (𝐴 × { 0 })):(𝐴𝐵)⟶(Base‘𝑅)))
1281273adant3 1081 . . . . . . . . . . . 12 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → ((𝑎 ∪ (𝐴 × { 0 })) ∈ 𝐺 ↔ (𝑎 ∪ (𝐴 × { 0 })):(𝐴𝐵)⟶(Base‘𝑅)))
129128adantr 481 . . . . . . . . . . 11 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → ((𝑎 ∪ (𝐴 × { 0 })) ∈ 𝐺 ↔ (𝑎 ∪ (𝐴 × { 0 })):(𝐴𝐵)⟶(Base‘𝑅)))
130126, 129mpbird 247 . . . . . . . . . 10 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → (𝑎 ∪ (𝐴 × { 0 })) ∈ 𝐺)
131 simpl3 1066 . . . . . . . . . . . . . 14 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → (𝐴𝐵) = ∅)
132117, 131syl5eq 2668 . . . . . . . . . . . . 13 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → (𝐵𝐴) = ∅)
133 ffn 6045 . . . . . . . . . . . . . 14 (𝑎:𝐵⟶(Base‘𝑅) → 𝑎 Fn 𝐵)
134 fnresdisj 6001 . . . . . . . . . . . . . 14 (𝑎 Fn 𝐵 → ((𝐵𝐴) = ∅ ↔ (𝑎𝐴) = ∅))
135107, 133, 1343syl 18 . . . . . . . . . . . . 13 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → ((𝐵𝐴) = ∅ ↔ (𝑎𝐴) = ∅))
136132, 135mpbid 222 . . . . . . . . . . . 12 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → (𝑎𝐴) = ∅)
137 fnconstg 6093 . . . . . . . . . . . . . 14 ( 0 ∈ V → (𝐴 × { 0 }) Fn 𝐴)
138 fnresdm 6000 . . . . . . . . . . . . . 14 ((𝐴 × { 0 }) Fn 𝐴 → ((𝐴 × { 0 }) ↾ 𝐴) = (𝐴 × { 0 }))
139109, 137, 138mp2b 10 . . . . . . . . . . . . 13 ((𝐴 × { 0 }) ↾ 𝐴) = (𝐴 × { 0 })
140139a1i 11 . . . . . . . . . . . 12 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → ((𝐴 × { 0 }) ↾ 𝐴) = (𝐴 × { 0 }))
141136, 140uneq12d 3768 . . . . . . . . . . 11 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → ((𝑎𝐴) ∪ ((𝐴 × { 0 }) ↾ 𝐴)) = (∅ ∪ (𝐴 × { 0 })))
142 resundir 5411 . . . . . . . . . . 11 ((𝑎 ∪ (𝐴 × { 0 })) ↾ 𝐴) = ((𝑎𝐴) ∪ ((𝐴 × { 0 }) ↾ 𝐴))
143 uncom 3757 . . . . . . . . . . . 12 (∅ ∪ (𝐴 × { 0 })) = ((𝐴 × { 0 }) ∪ ∅)
144 un0 3967 . . . . . . . . . . . 12 ((𝐴 × { 0 }) ∪ ∅) = (𝐴 × { 0 })
145143, 144eqtr2i 2645 . . . . . . . . . . 11 (𝐴 × { 0 }) = (∅ ∪ (𝐴 × { 0 }))
146141, 142, 1453eqtr4g 2681 . . . . . . . . . 10 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → ((𝑎 ∪ (𝐴 × { 0 })) ↾ 𝐴) = (𝐴 × { 0 }))
147 reseq1 5390 . . . . . . . . . . . 12 (𝑦 = (𝑎 ∪ (𝐴 × { 0 })) → (𝑦𝐴) = ((𝑎 ∪ (𝐴 × { 0 })) ↾ 𝐴))
148147eqeq1d 2624 . . . . . . . . . . 11 (𝑦 = (𝑎 ∪ (𝐴 × { 0 })) → ((𝑦𝐴) = (𝐴 × { 0 }) ↔ ((𝑎 ∪ (𝐴 × { 0 })) ↾ 𝐴) = (𝐴 × { 0 })))
149148, 2elrab2 3366 . . . . . . . . . 10 ((𝑎 ∪ (𝐴 × { 0 })) ∈ 𝐾 ↔ ((𝑎 ∪ (𝐴 × { 0 })) ∈ 𝐺 ∧ ((𝑎 ∪ (𝐴 × { 0 })) ↾ 𝐴) = (𝐴 × { 0 })))
150130, 146, 149sylanbrc 698 . . . . . . . . 9 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → (𝑎 ∪ (𝐴 × { 0 })) ∈ 𝐾)
151 resexg 5442 . . . . . . . . . 10 ((𝑎 ∪ (𝐴 × { 0 })) ∈ 𝐾 → ((𝑎 ∪ (𝐴 × { 0 })) ↾ 𝐵) ∈ V)
152150, 151syl 17 . . . . . . . . 9 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → ((𝑎 ∪ (𝐴 × { 0 })) ↾ 𝐵) ∈ V)
153 reseq1 5390 . . . . . . . . . 10 (𝑥 = (𝑎 ∪ (𝐴 × { 0 })) → (𝑥𝐵) = ((𝑎 ∪ (𝐴 × { 0 })) ↾ 𝐵))
154153, 1fvmptg 6280 . . . . . . . . 9 (((𝑎 ∪ (𝐴 × { 0 })) ∈ 𝐾 ∧ ((𝑎 ∪ (𝐴 × { 0 })) ↾ 𝐵) ∈ V) → (𝐹‘(𝑎 ∪ (𝐴 × { 0 }))) = ((𝑎 ∪ (𝐴 × { 0 })) ↾ 𝐵))
155150, 152, 154syl2anc 693 . . . . . . . 8 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → (𝐹‘(𝑎 ∪ (𝐴 × { 0 }))) = ((𝑎 ∪ (𝐴 × { 0 })) ↾ 𝐵))
156 resundir 5411 . . . . . . . . 9 ((𝑎 ∪ (𝐴 × { 0 })) ↾ 𝐵) = ((𝑎𝐵) ∪ ((𝐴 × { 0 }) ↾ 𝐵))
157 fnresdm 6000 . . . . . . . . . . . 12 (𝑎 Fn 𝐵 → (𝑎𝐵) = 𝑎)
158107, 133, 1573syl 18 . . . . . . . . . . 11 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → (𝑎𝐵) = 𝑎)
159 ffn 6045 . . . . . . . . . . . . . . 15 ((𝐴 × { 0 }):𝐴⟶{ 0 } → (𝐴 × { 0 }) Fn 𝐴)
160 fnresdisj 6001 . . . . . . . . . . . . . . 15 ((𝐴 × { 0 }) Fn 𝐴 → ((𝐴𝐵) = ∅ ↔ ((𝐴 × { 0 }) ↾ 𝐵) = ∅))
161110, 159, 160mp2b 10 . . . . . . . . . . . . . 14 ((𝐴𝐵) = ∅ ↔ ((𝐴 × { 0 }) ↾ 𝐵) = ∅)
162161biimpi 206 . . . . . . . . . . . . 13 ((𝐴𝐵) = ∅ → ((𝐴 × { 0 }) ↾ 𝐵) = ∅)
1631623ad2ant3 1084 . . . . . . . . . . . 12 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → ((𝐴 × { 0 }) ↾ 𝐵) = ∅)
164163adantr 481 . . . . . . . . . . 11 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → ((𝐴 × { 0 }) ↾ 𝐵) = ∅)
165158, 164uneq12d 3768 . . . . . . . . . 10 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → ((𝑎𝐵) ∪ ((𝐴 × { 0 }) ↾ 𝐵)) = (𝑎 ∪ ∅))
166 un0 3967 . . . . . . . . . 10 (𝑎 ∪ ∅) = 𝑎
167165, 166syl6eq 2672 . . . . . . . . 9 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → ((𝑎𝐵) ∪ ((𝐴 × { 0 }) ↾ 𝐵)) = 𝑎)
168156, 167syl5eq 2668 . . . . . . . 8 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → ((𝑎 ∪ (𝐴 × { 0 })) ↾ 𝐵) = 𝑎)
169155, 168eqtrd 2656 . . . . . . 7 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → (𝐹‘(𝑎 ∪ (𝐴 × { 0 }))) = 𝑎)
17095, 13lmhmf 19034 . . . . . . . . . 10 (𝐹 ∈ (𝐿 LMHom 𝐷) → 𝐹:𝐾⟶(Base‘𝐷))
171 ffn 6045 . . . . . . . . . 10 (𝐹:𝐾⟶(Base‘𝐷) → 𝐹 Fn 𝐾)
17249, 170, 1713syl 18 . . . . . . . . 9 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → 𝐹 Fn 𝐾)
173172adantr 481 . . . . . . . 8 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → 𝐹 Fn 𝐾)
174 fnfvelrn 6356 . . . . . . . 8 ((𝐹 Fn 𝐾 ∧ (𝑎 ∪ (𝐴 × { 0 })) ∈ 𝐾) → (𝐹‘(𝑎 ∪ (𝐴 × { 0 }))) ∈ ran 𝐹)
175173, 150, 174syl2anc 693 . . . . . . 7 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → (𝐹‘(𝑎 ∪ (𝐴 × { 0 }))) ∈ ran 𝐹)
176169, 175eqeltrrd 2702 . . . . . 6 (((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) ∧ 𝑎 ∈ (Base‘𝐷)) → 𝑎 ∈ ran 𝐹)
177176ex 450 . . . . 5 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → (𝑎 ∈ (Base‘𝐷) → 𝑎 ∈ ran 𝐹))
178177ssrdv 3609 . . . 4 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → (Base‘𝐷) ⊆ ran 𝐹)
179104, 178eqssd 3620 . . 3 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → ran 𝐹 = (Base‘𝐷))
180 dff1o5 6146 . . 3 (𝐹:𝐾1-1-onto→(Base‘𝐷) ↔ (𝐹:𝐾1-1→(Base‘𝐷) ∧ ran 𝐹 = (Base‘𝐷)))
181100, 179, 180sylanbrc 698 . 2 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → 𝐹:𝐾1-1-onto→(Base‘𝐷))
18295, 13islmim 19062 . 2 (𝐹 ∈ (𝐿 LMIso 𝐷) ↔ (𝐹 ∈ (𝐿 LMHom 𝐷) ∧ 𝐹:𝐾1-1-onto→(Base‘𝐷)))
18349, 181, 182sylanbrc 698 1 ((𝑅 ∈ LMod ∧ (𝐴𝐵) ∈ 𝑉 ∧ (𝐴𝐵) = ∅) → 𝐹 ∈ (𝐿 LMIso 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  {crab 2916  Vcvv 3200  cun 3572  cin 3573  wss 3574  c0 3915  {csn 4177  cmpt 4729   × cxp 5112  ccnv 5113  ran crn 5115  cres 5116  cima 5117   Fn wfn 5883  wf 5884  1-1wf1 5885  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  Basecbs 15857  s cress 15858  0gc0g 16100  s cpws 16107  Mndcmnd 17294  Grpcgrp 17422  SubGrpcsubg 17588   GrpHom cghm 17657  LModclmod 18863  LSubSpclss 18932   LMHom clmhm 19019   LMIso clmim 19020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-hom 15966  df-cco 15967  df-0g 16102  df-prds 16108  df-pws 16110  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-ghm 17658  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-lss 18933  df-lmhm 19022  df-lmim 19023
This theorem is referenced by:  pwslnmlem2  37663
  Copyright terms: Public domain W3C validator