MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reuccats1lem Structured version   Visualization version   GIF version

Theorem reuccats1lem 13479
Description: Lemma for reuccats1 13480. (Contributed by Alexander van der Vekens, 5-Oct-2018.) (Proof shortened by AV, 15-Jan-2020.)
Assertion
Ref Expression
reuccats1lem (((𝑊 ∈ Word 𝑉𝑈𝑋 ∧ (𝑊 ++ ⟨“𝑆”⟩) ∈ 𝑋) ∧ (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1)))) → (𝑊 = (𝑈 substr ⟨0, (#‘𝑊)⟩) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩)))
Distinct variable groups:   𝑆,𝑠   𝑥,𝑈   𝑉,𝑠,𝑥   𝑊,𝑠,𝑥   𝑋,𝑠,𝑥
Allowed substitution hints:   𝑆(𝑥)   𝑈(𝑠)

Proof of Theorem reuccats1lem
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2689 . . . . . . . . 9 (𝑥 = 𝑈 → (𝑥 ∈ Word 𝑉𝑈 ∈ Word 𝑉))
2 fveq2 6191 . . . . . . . . . 10 (𝑥 = 𝑈 → (#‘𝑥) = (#‘𝑈))
32eqeq1d 2624 . . . . . . . . 9 (𝑥 = 𝑈 → ((#‘𝑥) = ((#‘𝑊) + 1) ↔ (#‘𝑈) = ((#‘𝑊) + 1)))
41, 3anbi12d 747 . . . . . . . 8 (𝑥 = 𝑈 → ((𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1)) ↔ (𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1))))
54rspcv 3305 . . . . . . 7 (𝑈𝑋 → (∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1)) → (𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1))))
65adantl 482 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑈𝑋) → (∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1)) → (𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1))))
7 simpl 473 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉𝑈𝑋) → 𝑊 ∈ Word 𝑉)
87adantr 481 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝑈𝑋) ∧ (𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1))) → 𝑊 ∈ Word 𝑉)
9 simpl 473 . . . . . . . . . . 11 ((𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1)) → 𝑈 ∈ Word 𝑉)
109adantl 482 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝑈𝑋) ∧ (𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1))) → 𝑈 ∈ Word 𝑉)
11 simprr 796 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝑈𝑋) ∧ (𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1))) → (#‘𝑈) = ((#‘𝑊) + 1))
12 ccats1swrdeqrex 13478 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1)) → (𝑊 = (𝑈 substr ⟨0, (#‘𝑊)⟩) → ∃𝑢𝑉 𝑈 = (𝑊 ++ ⟨“𝑢”⟩)))
138, 10, 11, 12syl3anc 1326 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑈𝑋) ∧ (𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1))) → (𝑊 = (𝑈 substr ⟨0, (#‘𝑊)⟩) → ∃𝑢𝑉 𝑈 = (𝑊 ++ ⟨“𝑢”⟩)))
14 s1eq 13380 . . . . . . . . . . . . . . . . . 18 (𝑠 = 𝑢 → ⟨“𝑠”⟩ = ⟨“𝑢”⟩)
1514oveq2d 6666 . . . . . . . . . . . . . . . . 17 (𝑠 = 𝑢 → (𝑊 ++ ⟨“𝑠”⟩) = (𝑊 ++ ⟨“𝑢”⟩))
1615eleq1d 2686 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑢 → ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋 ↔ (𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋))
17 eqeq2 2633 . . . . . . . . . . . . . . . 16 (𝑠 = 𝑢 → (𝑆 = 𝑠𝑆 = 𝑢))
1816, 17imbi12d 334 . . . . . . . . . . . . . . 15 (𝑠 = 𝑢 → (((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) ↔ ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢)))
1918rspcv 3305 . . . . . . . . . . . . . 14 (𝑢𝑉 → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢)))
20 eleq1 2689 . . . . . . . . . . . . . . . . . 18 (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → (𝑈𝑋 ↔ (𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋))
2120biimpac 503 . . . . . . . . . . . . . . . . 17 ((𝑈𝑋𝑈 = (𝑊 ++ ⟨“𝑢”⟩)) → (𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋)
22 s1eq 13380 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑢 = 𝑆 → ⟨“𝑢”⟩ = ⟨“𝑆”⟩)
2322eqcoms 2630 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑆 = 𝑢 → ⟨“𝑢”⟩ = ⟨“𝑆”⟩)
2423oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . 22 (𝑆 = 𝑢 → (𝑊 ++ ⟨“𝑢”⟩) = (𝑊 ++ ⟨“𝑆”⟩))
2524eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . 21 (𝑆 = 𝑢 → (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) ↔ 𝑈 = (𝑊 ++ ⟨“𝑆”⟩)))
2625biimpd 219 . . . . . . . . . . . . . . . . . . . 20 (𝑆 = 𝑢 → (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩)))
2726imim2i 16 . . . . . . . . . . . . . . . . . . 19 (((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢) → ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋 → (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
2827com13 88 . . . . . . . . . . . . . . . . . 18 (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋 → (((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
2928adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑈𝑋𝑈 = (𝑊 ++ ⟨“𝑢”⟩)) → ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋 → (((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3021, 29mpd 15 . . . . . . . . . . . . . . . 16 ((𝑈𝑋𝑈 = (𝑊 ++ ⟨“𝑢”⟩)) → (((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩)))
3130ex 450 . . . . . . . . . . . . . . 15 (𝑈𝑋 → (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → (((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3231com23 86 . . . . . . . . . . . . . 14 (𝑈𝑋 → (((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑆 = 𝑢) → (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3319, 32sylan9r 690 . . . . . . . . . . . . 13 ((𝑈𝑋𝑢𝑉) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3433com23 86 . . . . . . . . . . . 12 ((𝑈𝑋𝑢𝑉) → (𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3534rexlimdva 3031 . . . . . . . . . . 11 (𝑈𝑋 → (∃𝑢𝑉 𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3635adantl 482 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑈𝑋) → (∃𝑢𝑉 𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3736adantr 481 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑈𝑋) ∧ (𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1))) → (∃𝑢𝑉 𝑈 = (𝑊 ++ ⟨“𝑢”⟩) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3813, 37syld 47 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑈𝑋) ∧ (𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1))) → (𝑊 = (𝑈 substr ⟨0, (#‘𝑊)⟩) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
3938com23 86 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑈𝑋) ∧ (𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1))) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → (𝑊 = (𝑈 substr ⟨0, (#‘𝑊)⟩) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
4039ex 450 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑈𝑋) → ((𝑈 ∈ Word 𝑉 ∧ (#‘𝑈) = ((#‘𝑊) + 1)) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → (𝑊 = (𝑈 substr ⟨0, (#‘𝑊)⟩) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩)))))
416, 40syld 47 . . . . 5 ((𝑊 ∈ Word 𝑉𝑈𝑋) → (∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1)) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → (𝑊 = (𝑈 substr ⟨0, (#‘𝑊)⟩) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩)))))
4241com23 86 . . . 4 ((𝑊 ∈ Word 𝑉𝑈𝑋) → (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) → (∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1)) → (𝑊 = (𝑈 substr ⟨0, (#‘𝑊)⟩) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩)))))
4342impd 447 . . 3 ((𝑊 ∈ Word 𝑉𝑈𝑋) → ((∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) → (𝑊 = (𝑈 substr ⟨0, (#‘𝑊)⟩) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
44433adant3 1081 . 2 ((𝑊 ∈ Word 𝑉𝑈𝑋 ∧ (𝑊 ++ ⟨“𝑆”⟩) ∈ 𝑋) → ((∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1))) → (𝑊 = (𝑈 substr ⟨0, (#‘𝑊)⟩) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩))))
4544imp 445 1 (((𝑊 ∈ Word 𝑉𝑈𝑋 ∧ (𝑊 ++ ⟨“𝑆”⟩) ∈ 𝑋) ∧ (∀𝑠𝑉 ((𝑊 ++ ⟨“𝑠”⟩) ∈ 𝑋𝑆 = 𝑠) ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (#‘𝑥) = ((#‘𝑊) + 1)))) → (𝑊 = (𝑈 substr ⟨0, (#‘𝑊)⟩) → 𝑈 = (𝑊 ++ ⟨“𝑆”⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  cop 4183  cfv 5888  (class class class)co 6650  0cc0 9936  1c1 9937   + caddc 9939  #chash 13117  Word cword 13291   ++ cconcat 13293  ⟨“cs1 13294   substr csubstr 13295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-lsw 13300  df-concat 13301  df-s1 13302  df-substr 13303
This theorem is referenced by:  reuccats1  13480
  Copyright terms: Public domain W3C validator