Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmsscmap2 Structured version   Visualization version   GIF version

Theorem rhmsscmap2 42019
Description: The unital ring homomorphisms between unital rings (in a universe) are a subcategory subset of the mappings between base sets of unital rings (in the same universe). (Contributed by AV, 6-Mar-2020.)
Hypotheses
Ref Expression
rhmsscmap.u (𝜑𝑈𝑉)
rhmsscmap.r (𝜑𝑅 = (Ring ∩ 𝑈))
Assertion
Ref Expression
rhmsscmap2 (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) ⊆cat (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))))
Distinct variable group:   𝑥,𝑅,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem rhmsscmap2
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3624 . . 3 𝑅𝑅
21a1i 11 . 2 (𝜑𝑅𝑅)
3 eqid 2622 . . . . . . 7 (Base‘𝑎) = (Base‘𝑎)
4 eqid 2622 . . . . . . 7 (Base‘𝑏) = (Base‘𝑏)
53, 4rhmf 18726 . . . . . 6 ( ∈ (𝑎 RingHom 𝑏) → :(Base‘𝑎)⟶(Base‘𝑏))
6 simpr 477 . . . . . . . 8 (((𝜑 ∧ (𝑎𝑅𝑏𝑅)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → :(Base‘𝑎)⟶(Base‘𝑏))
7 fvex 6201 . . . . . . . . . 10 (Base‘𝑏) ∈ V
8 fvex 6201 . . . . . . . . . 10 (Base‘𝑎) ∈ V
97, 8pm3.2i 471 . . . . . . . . 9 ((Base‘𝑏) ∈ V ∧ (Base‘𝑎) ∈ V)
10 elmapg 7870 . . . . . . . . 9 (((Base‘𝑏) ∈ V ∧ (Base‘𝑎) ∈ V) → ( ∈ ((Base‘𝑏) ↑𝑚 (Base‘𝑎)) ↔ :(Base‘𝑎)⟶(Base‘𝑏)))
119, 10mp1i 13 . . . . . . . 8 (((𝜑 ∧ (𝑎𝑅𝑏𝑅)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → ( ∈ ((Base‘𝑏) ↑𝑚 (Base‘𝑎)) ↔ :(Base‘𝑎)⟶(Base‘𝑏)))
126, 11mpbird 247 . . . . . . 7 (((𝜑 ∧ (𝑎𝑅𝑏𝑅)) ∧ :(Base‘𝑎)⟶(Base‘𝑏)) → ∈ ((Base‘𝑏) ↑𝑚 (Base‘𝑎)))
1312ex 450 . . . . . 6 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (:(Base‘𝑎)⟶(Base‘𝑏) → ∈ ((Base‘𝑏) ↑𝑚 (Base‘𝑎))))
145, 13syl5 34 . . . . 5 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → ( ∈ (𝑎 RingHom 𝑏) → ∈ ((Base‘𝑏) ↑𝑚 (Base‘𝑎))))
1514ssrdv 3609 . . . 4 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (𝑎 RingHom 𝑏) ⊆ ((Base‘𝑏) ↑𝑚 (Base‘𝑎)))
16 ovres 6800 . . . . 5 ((𝑎𝑅𝑏𝑅) → (𝑎( RingHom ↾ (𝑅 × 𝑅))𝑏) = (𝑎 RingHom 𝑏))
1716adantl 482 . . . 4 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (𝑎( RingHom ↾ (𝑅 × 𝑅))𝑏) = (𝑎 RingHom 𝑏))
18 eqidd 2623 . . . . . 6 ((𝑎𝑅𝑏𝑅) → (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))) = (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))))
19 fveq2 6191 . . . . . . . 8 (𝑦 = 𝑏 → (Base‘𝑦) = (Base‘𝑏))
20 fveq2 6191 . . . . . . . 8 (𝑥 = 𝑎 → (Base‘𝑥) = (Base‘𝑎))
2119, 20oveqan12rd 6670 . . . . . . 7 ((𝑥 = 𝑎𝑦 = 𝑏) → ((Base‘𝑦) ↑𝑚 (Base‘𝑥)) = ((Base‘𝑏) ↑𝑚 (Base‘𝑎)))
2221adantl 482 . . . . . 6 (((𝑎𝑅𝑏𝑅) ∧ (𝑥 = 𝑎𝑦 = 𝑏)) → ((Base‘𝑦) ↑𝑚 (Base‘𝑥)) = ((Base‘𝑏) ↑𝑚 (Base‘𝑎)))
23 simpl 473 . . . . . 6 ((𝑎𝑅𝑏𝑅) → 𝑎𝑅)
24 simpr 477 . . . . . 6 ((𝑎𝑅𝑏𝑅) → 𝑏𝑅)
25 ovexd 6680 . . . . . 6 ((𝑎𝑅𝑏𝑅) → ((Base‘𝑏) ↑𝑚 (Base‘𝑎)) ∈ V)
2618, 22, 23, 24, 25ovmpt2d 6788 . . . . 5 ((𝑎𝑅𝑏𝑅) → (𝑎(𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))𝑏) = ((Base‘𝑏) ↑𝑚 (Base‘𝑎)))
2726adantl 482 . . . 4 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (𝑎(𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))𝑏) = ((Base‘𝑏) ↑𝑚 (Base‘𝑎)))
2815, 17, 273sstr4d 3648 . . 3 ((𝜑 ∧ (𝑎𝑅𝑏𝑅)) → (𝑎( RingHom ↾ (𝑅 × 𝑅))𝑏) ⊆ (𝑎(𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))𝑏))
2928ralrimivva 2971 . 2 (𝜑 → ∀𝑎𝑅𝑏𝑅 (𝑎( RingHom ↾ (𝑅 × 𝑅))𝑏) ⊆ (𝑎(𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))𝑏))
30 rhmfn 41918 . . . . 5 RingHom Fn (Ring × Ring)
3130a1i 11 . . . 4 (𝜑 → RingHom Fn (Ring × Ring))
32 rhmsscmap.r . . . . . 6 (𝜑𝑅 = (Ring ∩ 𝑈))
33 inss1 3833 . . . . . 6 (Ring ∩ 𝑈) ⊆ Ring
3432, 33syl6eqss 3655 . . . . 5 (𝜑𝑅 ⊆ Ring)
35 xpss12 5225 . . . . 5 ((𝑅 ⊆ Ring ∧ 𝑅 ⊆ Ring) → (𝑅 × 𝑅) ⊆ (Ring × Ring))
3634, 34, 35syl2anc 693 . . . 4 (𝜑 → (𝑅 × 𝑅) ⊆ (Ring × Ring))
37 fnssres 6004 . . . 4 (( RingHom Fn (Ring × Ring) ∧ (𝑅 × 𝑅) ⊆ (Ring × Ring)) → ( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅))
3831, 36, 37syl2anc 693 . . 3 (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅))
39 eqid 2622 . . . . 5 (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))) = (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))
40 ovex 6678 . . . . 5 ((Base‘𝑦) ↑𝑚 (Base‘𝑥)) ∈ V
4139, 40fnmpt2i 7239 . . . 4 (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))) Fn (𝑅 × 𝑅)
4241a1i 11 . . 3 (𝜑 → (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))) Fn (𝑅 × 𝑅))
43 incom 3805 . . . . 5 (Ring ∩ 𝑈) = (𝑈 ∩ Ring)
44 rhmsscmap.u . . . . . 6 (𝜑𝑈𝑉)
45 inex1g 4801 . . . . . 6 (𝑈𝑉 → (𝑈 ∩ Ring) ∈ V)
4644, 45syl 17 . . . . 5 (𝜑 → (𝑈 ∩ Ring) ∈ V)
4743, 46syl5eqel 2705 . . . 4 (𝜑 → (Ring ∩ 𝑈) ∈ V)
4832, 47eqeltrd 2701 . . 3 (𝜑𝑅 ∈ V)
4938, 42, 48isssc 16480 . 2 (𝜑 → (( RingHom ↾ (𝑅 × 𝑅)) ⊆cat (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))) ↔ (𝑅𝑅 ∧ ∀𝑎𝑅𝑏𝑅 (𝑎( RingHom ↾ (𝑅 × 𝑅))𝑏) ⊆ (𝑎(𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))𝑏))))
502, 29, 49mpbir2and 957 1 (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) ⊆cat (𝑥𝑅, 𝑦𝑅 ↦ ((Base‘𝑦) ↑𝑚 (Base‘𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  cin 3573  wss 3574   class class class wbr 4653   × cxp 5112  cres 5116   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  𝑚 cmap 7857  Basecbs 15857  cat cssc 16467  Ringcrg 18547   RingHom crh 18712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-ssc 16470  df-mhm 17335  df-ghm 17658  df-mgp 18490  df-ur 18502  df-ring 18549  df-rnghom 18715
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator