Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnglz Structured version   Visualization version   GIF version

Theorem rnglz 41884
Description: The zero of a nonunital ring is a left-absorbing element. (Contributed by AV, 17-Apr-2020.)
Hypotheses
Ref Expression
rngcl.b 𝐵 = (Base‘𝑅)
rngcl.t · = (.r𝑅)
rnglz.z 0 = (0g𝑅)
Assertion
Ref Expression
rnglz ((𝑅 ∈ Rng ∧ 𝑋𝐵) → ( 0 · 𝑋) = 0 )

Proof of Theorem rnglz
StepHypRef Expression
1 rngabl 41877 . . . . . . 7 (𝑅 ∈ Rng → 𝑅 ∈ Abel)
2 ablgrp 18198 . . . . . . 7 (𝑅 ∈ Abel → 𝑅 ∈ Grp)
31, 2syl 17 . . . . . 6 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
4 rngcl.b . . . . . . . 8 𝐵 = (Base‘𝑅)
5 rnglz.z . . . . . . . 8 0 = (0g𝑅)
64, 5grpidcl 17450 . . . . . . 7 (𝑅 ∈ Grp → 0𝐵)
7 eqid 2622 . . . . . . . 8 (+g𝑅) = (+g𝑅)
84, 7, 5grplid 17452 . . . . . . 7 ((𝑅 ∈ Grp ∧ 0𝐵) → ( 0 (+g𝑅) 0 ) = 0 )
96, 8mpdan 702 . . . . . 6 (𝑅 ∈ Grp → ( 0 (+g𝑅) 0 ) = 0 )
103, 9syl 17 . . . . 5 (𝑅 ∈ Rng → ( 0 (+g𝑅) 0 ) = 0 )
1110adantr 481 . . . 4 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → ( 0 (+g𝑅) 0 ) = 0 )
1211oveq1d 6665 . . 3 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → (( 0 (+g𝑅) 0 ) · 𝑋) = ( 0 · 𝑋))
13 simpl 473 . . . 4 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → 𝑅 ∈ Rng)
143, 6syl 17 . . . . . . 7 (𝑅 ∈ Rng → 0𝐵)
1514, 14jca 554 . . . . . 6 (𝑅 ∈ Rng → ( 0𝐵0𝐵))
1615anim1i 592 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → (( 0𝐵0𝐵) ∧ 𝑋𝐵))
17 df-3an 1039 . . . . 5 (( 0𝐵0𝐵𝑋𝐵) ↔ (( 0𝐵0𝐵) ∧ 𝑋𝐵))
1816, 17sylibr 224 . . . 4 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → ( 0𝐵0𝐵𝑋𝐵))
19 rngcl.t . . . . 5 · = (.r𝑅)
204, 7, 19rngdir 41882 . . . 4 ((𝑅 ∈ Rng ∧ ( 0𝐵0𝐵𝑋𝐵)) → (( 0 (+g𝑅) 0 ) · 𝑋) = (( 0 · 𝑋)(+g𝑅)( 0 · 𝑋)))
2113, 18, 20syl2anc 693 . . 3 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → (( 0 (+g𝑅) 0 ) · 𝑋) = (( 0 · 𝑋)(+g𝑅)( 0 · 𝑋)))
223adantr 481 . . . 4 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → 𝑅 ∈ Grp)
2314adantr 481 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → 0𝐵)
24 simpr 477 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → 𝑋𝐵)
254, 19rngcl 41883 . . . . 5 ((𝑅 ∈ Rng ∧ 0𝐵𝑋𝐵) → ( 0 · 𝑋) ∈ 𝐵)
2613, 23, 24, 25syl3anc 1326 . . . 4 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → ( 0 · 𝑋) ∈ 𝐵)
274, 7, 5grprid 17453 . . . . 5 ((𝑅 ∈ Grp ∧ ( 0 · 𝑋) ∈ 𝐵) → (( 0 · 𝑋)(+g𝑅) 0 ) = ( 0 · 𝑋))
2827eqcomd 2628 . . . 4 ((𝑅 ∈ Grp ∧ ( 0 · 𝑋) ∈ 𝐵) → ( 0 · 𝑋) = (( 0 · 𝑋)(+g𝑅) 0 ))
2922, 26, 28syl2anc 693 . . 3 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → ( 0 · 𝑋) = (( 0 · 𝑋)(+g𝑅) 0 ))
3012, 21, 293eqtr3d 2664 . 2 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → (( 0 · 𝑋)(+g𝑅)( 0 · 𝑋)) = (( 0 · 𝑋)(+g𝑅) 0 ))
314, 7grplcan 17477 . . 3 ((𝑅 ∈ Grp ∧ (( 0 · 𝑋) ∈ 𝐵0𝐵 ∧ ( 0 · 𝑋) ∈ 𝐵)) → ((( 0 · 𝑋)(+g𝑅)( 0 · 𝑋)) = (( 0 · 𝑋)(+g𝑅) 0 ) ↔ ( 0 · 𝑋) = 0 ))
3222, 26, 23, 26, 31syl13anc 1328 . 2 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → ((( 0 · 𝑋)(+g𝑅)( 0 · 𝑋)) = (( 0 · 𝑋)(+g𝑅) 0 ) ↔ ( 0 · 𝑋) = 0 ))
3330, 32mpbid 222 1 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → ( 0 · 𝑋) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  .rcmulr 15942  0gc0g 16100  Grpcgrp 17422  Abelcabl 18194  Rngcrng 41874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-abl 18196  df-mgp 18490  df-rng0 41875
This theorem is referenced by:  zrrnghm  41917
  Copyright terms: Public domain W3C validator