![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rp-isfinite5 | Structured version Visualization version GIF version |
Description: A set is said to be finite if it can be put in one-to-one correspondence with all the natural numbers between 1 and some 𝑛 ∈ ℕ0. (Contributed by Richard Penner, 3-Mar-2020.) |
Ref | Expression |
---|---|
rp-isfinite5 | ⊢ (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ℕ0 (1...𝑛) ≈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6201 | . . . 4 ⊢ (#‘𝐴) ∈ V | |
2 | hashcl 13147 | . . . . 5 ⊢ (𝐴 ∈ Fin → (#‘𝐴) ∈ ℕ0) | |
3 | isfinite4 13153 | . . . . . 6 ⊢ (𝐴 ∈ Fin ↔ (1...(#‘𝐴)) ≈ 𝐴) | |
4 | 3 | biimpi 206 | . . . . 5 ⊢ (𝐴 ∈ Fin → (1...(#‘𝐴)) ≈ 𝐴) |
5 | 2, 4 | jca 554 | . . . 4 ⊢ (𝐴 ∈ Fin → ((#‘𝐴) ∈ ℕ0 ∧ (1...(#‘𝐴)) ≈ 𝐴)) |
6 | eleq1 2689 | . . . . . 6 ⊢ (𝑛 = (#‘𝐴) → (𝑛 ∈ ℕ0 ↔ (#‘𝐴) ∈ ℕ0)) | |
7 | oveq2 6658 | . . . . . . 7 ⊢ (𝑛 = (#‘𝐴) → (1...𝑛) = (1...(#‘𝐴))) | |
8 | 7 | breq1d 4663 | . . . . . 6 ⊢ (𝑛 = (#‘𝐴) → ((1...𝑛) ≈ 𝐴 ↔ (1...(#‘𝐴)) ≈ 𝐴)) |
9 | 6, 8 | anbi12d 747 | . . . . 5 ⊢ (𝑛 = (#‘𝐴) → ((𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴) ↔ ((#‘𝐴) ∈ ℕ0 ∧ (1...(#‘𝐴)) ≈ 𝐴))) |
10 | 9 | spcegv 3294 | . . . 4 ⊢ ((#‘𝐴) ∈ V → (((#‘𝐴) ∈ ℕ0 ∧ (1...(#‘𝐴)) ≈ 𝐴) → ∃𝑛(𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴))) |
11 | 1, 5, 10 | mpsyl 68 | . . 3 ⊢ (𝐴 ∈ Fin → ∃𝑛(𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) |
12 | df-rex 2918 | . . 3 ⊢ (∃𝑛 ∈ ℕ0 (1...𝑛) ≈ 𝐴 ↔ ∃𝑛(𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴)) | |
13 | 11, 12 | sylibr 224 | . 2 ⊢ (𝐴 ∈ Fin → ∃𝑛 ∈ ℕ0 (1...𝑛) ≈ 𝐴) |
14 | hasheni 13136 | . . . . . . 7 ⊢ ((1...𝑛) ≈ 𝐴 → (#‘(1...𝑛)) = (#‘𝐴)) | |
15 | 14 | eqcomd 2628 | . . . . . 6 ⊢ ((1...𝑛) ≈ 𝐴 → (#‘𝐴) = (#‘(1...𝑛))) |
16 | hashfz1 13134 | . . . . . 6 ⊢ (𝑛 ∈ ℕ0 → (#‘(1...𝑛)) = 𝑛) | |
17 | ovex 6678 | . . . . . . 7 ⊢ (1...(#‘𝐴)) ∈ V | |
18 | eqtr 2641 | . . . . . . 7 ⊢ (((#‘𝐴) = (#‘(1...𝑛)) ∧ (#‘(1...𝑛)) = 𝑛) → (#‘𝐴) = 𝑛) | |
19 | oveq2 6658 | . . . . . . . 8 ⊢ ((#‘𝐴) = 𝑛 → (1...(#‘𝐴)) = (1...𝑛)) | |
20 | eqeng 7989 | . . . . . . . 8 ⊢ ((1...(#‘𝐴)) ∈ V → ((1...(#‘𝐴)) = (1...𝑛) → (1...(#‘𝐴)) ≈ (1...𝑛))) | |
21 | 19, 20 | syl5 34 | . . . . . . 7 ⊢ ((1...(#‘𝐴)) ∈ V → ((#‘𝐴) = 𝑛 → (1...(#‘𝐴)) ≈ (1...𝑛))) |
22 | 17, 18, 21 | mpsyl 68 | . . . . . 6 ⊢ (((#‘𝐴) = (#‘(1...𝑛)) ∧ (#‘(1...𝑛)) = 𝑛) → (1...(#‘𝐴)) ≈ (1...𝑛)) |
23 | 15, 16, 22 | syl2anr 495 | . . . . 5 ⊢ ((𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴) → (1...(#‘𝐴)) ≈ (1...𝑛)) |
24 | entr 8008 | . . . . 5 ⊢ (((1...(#‘𝐴)) ≈ (1...𝑛) ∧ (1...𝑛) ≈ 𝐴) → (1...(#‘𝐴)) ≈ 𝐴) | |
25 | 23, 24 | sylancom 701 | . . . 4 ⊢ ((𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴) → (1...(#‘𝐴)) ≈ 𝐴) |
26 | 25, 3 | sylibr 224 | . . 3 ⊢ ((𝑛 ∈ ℕ0 ∧ (1...𝑛) ≈ 𝐴) → 𝐴 ∈ Fin) |
27 | 26 | rexlimiva 3028 | . 2 ⊢ (∃𝑛 ∈ ℕ0 (1...𝑛) ≈ 𝐴 → 𝐴 ∈ Fin) |
28 | 13, 27 | impbii 199 | 1 ⊢ (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ℕ0 (1...𝑛) ≈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 384 = wceq 1483 ∃wex 1704 ∈ wcel 1990 ∃wrex 2913 Vcvv 3200 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 ≈ cen 7952 Fincfn 7955 1c1 9937 ℕ0cn0 11292 ...cfz 12326 #chash 13117 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-hash 13118 |
This theorem is referenced by: rp-isfinite6 37864 |
Copyright terms: Public domain | W3C validator |