MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrgsupp Structured version   Visualization version   GIF version

Theorem rrgsupp 19291
Description: Left multiplication by a left regular element does not change the support set of a vector. (Contributed by Stefan O'Rear, 28-Mar-2015.) (Revised by AV, 20-Jul-2019.)
Hypotheses
Ref Expression
rrgval.e 𝐸 = (RLReg‘𝑅)
rrgval.b 𝐵 = (Base‘𝑅)
rrgval.t · = (.r𝑅)
rrgval.z 0 = (0g𝑅)
rrgsupp.i (𝜑𝐼𝑉)
rrgsupp.r (𝜑𝑅 ∈ Ring)
rrgsupp.x (𝜑𝑋𝐸)
rrgsupp.y (𝜑𝑌:𝐼𝐵)
Assertion
Ref Expression
rrgsupp (𝜑 → (((𝐼 × {𝑋}) ∘𝑓 · 𝑌) supp 0 ) = (𝑌 supp 0 ))

Proof of Theorem rrgsupp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrgsupp.i . . . . . . . . 9 (𝜑𝐼𝑉)
2 rrgsupp.x . . . . . . . . . 10 (𝜑𝑋𝐸)
32adantr 481 . . . . . . . . 9 ((𝜑𝑦𝐼) → 𝑋𝐸)
4 fvexd 6203 . . . . . . . . 9 ((𝜑𝑦𝐼) → (𝑌𝑦) ∈ V)
5 fconstmpt 5163 . . . . . . . . . 10 (𝐼 × {𝑋}) = (𝑦𝐼𝑋)
65a1i 11 . . . . . . . . 9 (𝜑 → (𝐼 × {𝑋}) = (𝑦𝐼𝑋))
7 rrgsupp.y . . . . . . . . . 10 (𝜑𝑌:𝐼𝐵)
87feqmptd 6249 . . . . . . . . 9 (𝜑𝑌 = (𝑦𝐼 ↦ (𝑌𝑦)))
91, 3, 4, 6, 8offval2 6914 . . . . . . . 8 (𝜑 → ((𝐼 × {𝑋}) ∘𝑓 · 𝑌) = (𝑦𝐼 ↦ (𝑋 · (𝑌𝑦))))
109adantr 481 . . . . . . 7 ((𝜑𝑥𝐼) → ((𝐼 × {𝑋}) ∘𝑓 · 𝑌) = (𝑦𝐼 ↦ (𝑋 · (𝑌𝑦))))
1110fveq1d 6193 . . . . . 6 ((𝜑𝑥𝐼) → (((𝐼 × {𝑋}) ∘𝑓 · 𝑌)‘𝑥) = ((𝑦𝐼 ↦ (𝑋 · (𝑌𝑦)))‘𝑥))
12 simpr 477 . . . . . . 7 ((𝜑𝑥𝐼) → 𝑥𝐼)
13 ovex 6678 . . . . . . 7 (𝑋 · (𝑌𝑥)) ∈ V
14 fveq2 6191 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑌𝑦) = (𝑌𝑥))
1514oveq2d 6666 . . . . . . . 8 (𝑦 = 𝑥 → (𝑋 · (𝑌𝑦)) = (𝑋 · (𝑌𝑥)))
16 eqid 2622 . . . . . . . 8 (𝑦𝐼 ↦ (𝑋 · (𝑌𝑦))) = (𝑦𝐼 ↦ (𝑋 · (𝑌𝑦)))
1715, 16fvmptg 6280 . . . . . . 7 ((𝑥𝐼 ∧ (𝑋 · (𝑌𝑥)) ∈ V) → ((𝑦𝐼 ↦ (𝑋 · (𝑌𝑦)))‘𝑥) = (𝑋 · (𝑌𝑥)))
1812, 13, 17sylancl 694 . . . . . 6 ((𝜑𝑥𝐼) → ((𝑦𝐼 ↦ (𝑋 · (𝑌𝑦)))‘𝑥) = (𝑋 · (𝑌𝑥)))
1911, 18eqtrd 2656 . . . . 5 ((𝜑𝑥𝐼) → (((𝐼 × {𝑋}) ∘𝑓 · 𝑌)‘𝑥) = (𝑋 · (𝑌𝑥)))
2019neeq1d 2853 . . . 4 ((𝜑𝑥𝐼) → ((((𝐼 × {𝑋}) ∘𝑓 · 𝑌)‘𝑥) ≠ 0 ↔ (𝑋 · (𝑌𝑥)) ≠ 0 ))
2120rabbidva 3188 . . 3 (𝜑 → {𝑥𝐼 ∣ (((𝐼 × {𝑋}) ∘𝑓 · 𝑌)‘𝑥) ≠ 0 } = {𝑥𝐼 ∣ (𝑋 · (𝑌𝑥)) ≠ 0 })
22 rrgsupp.r . . . . . . 7 (𝜑𝑅 ∈ Ring)
2322adantr 481 . . . . . 6 ((𝜑𝑥𝐼) → 𝑅 ∈ Ring)
242adantr 481 . . . . . 6 ((𝜑𝑥𝐼) → 𝑋𝐸)
257ffvelrnda 6359 . . . . . 6 ((𝜑𝑥𝐼) → (𝑌𝑥) ∈ 𝐵)
26 rrgval.e . . . . . . 7 𝐸 = (RLReg‘𝑅)
27 rrgval.b . . . . . . 7 𝐵 = (Base‘𝑅)
28 rrgval.t . . . . . . 7 · = (.r𝑅)
29 rrgval.z . . . . . . 7 0 = (0g𝑅)
3026, 27, 28, 29rrgeq0 19290 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐸 ∧ (𝑌𝑥) ∈ 𝐵) → ((𝑋 · (𝑌𝑥)) = 0 ↔ (𝑌𝑥) = 0 ))
3123, 24, 25, 30syl3anc 1326 . . . . 5 ((𝜑𝑥𝐼) → ((𝑋 · (𝑌𝑥)) = 0 ↔ (𝑌𝑥) = 0 ))
3231necon3bid 2838 . . . 4 ((𝜑𝑥𝐼) → ((𝑋 · (𝑌𝑥)) ≠ 0 ↔ (𝑌𝑥) ≠ 0 ))
3332rabbidva 3188 . . 3 (𝜑 → {𝑥𝐼 ∣ (𝑋 · (𝑌𝑥)) ≠ 0 } = {𝑥𝐼 ∣ (𝑌𝑥) ≠ 0 })
3421, 33eqtrd 2656 . 2 (𝜑 → {𝑥𝐼 ∣ (((𝐼 × {𝑋}) ∘𝑓 · 𝑌)‘𝑥) ≠ 0 } = {𝑥𝐼 ∣ (𝑌𝑥) ≠ 0 })
35 ovex 6678 . . . . . 6 (𝑋 · (𝑌𝑦)) ∈ V
3635, 16fnmpti 6022 . . . . 5 (𝑦𝐼 ↦ (𝑋 · (𝑌𝑦))) Fn 𝐼
37 fneq1 5979 . . . . 5 (((𝐼 × {𝑋}) ∘𝑓 · 𝑌) = (𝑦𝐼 ↦ (𝑋 · (𝑌𝑦))) → (((𝐼 × {𝑋}) ∘𝑓 · 𝑌) Fn 𝐼 ↔ (𝑦𝐼 ↦ (𝑋 · (𝑌𝑦))) Fn 𝐼))
3836, 37mpbiri 248 . . . 4 (((𝐼 × {𝑋}) ∘𝑓 · 𝑌) = (𝑦𝐼 ↦ (𝑋 · (𝑌𝑦))) → ((𝐼 × {𝑋}) ∘𝑓 · 𝑌) Fn 𝐼)
399, 38syl 17 . . 3 (𝜑 → ((𝐼 × {𝑋}) ∘𝑓 · 𝑌) Fn 𝐼)
40 fvex 6201 . . . . 5 (0g𝑅) ∈ V
4129, 40eqeltri 2697 . . . 4 0 ∈ V
4241a1i 11 . . 3 (𝜑0 ∈ V)
43 suppvalfn 7302 . . 3 ((((𝐼 × {𝑋}) ∘𝑓 · 𝑌) Fn 𝐼𝐼𝑉0 ∈ V) → (((𝐼 × {𝑋}) ∘𝑓 · 𝑌) supp 0 ) = {𝑥𝐼 ∣ (((𝐼 × {𝑋}) ∘𝑓 · 𝑌)‘𝑥) ≠ 0 })
4439, 1, 42, 43syl3anc 1326 . 2 (𝜑 → (((𝐼 × {𝑋}) ∘𝑓 · 𝑌) supp 0 ) = {𝑥𝐼 ∣ (((𝐼 × {𝑋}) ∘𝑓 · 𝑌)‘𝑥) ≠ 0 })
45 ffn 6045 . . . 4 (𝑌:𝐼𝐵𝑌 Fn 𝐼)
467, 45syl 17 . . 3 (𝜑𝑌 Fn 𝐼)
47 suppvalfn 7302 . . 3 ((𝑌 Fn 𝐼𝐼𝑉0 ∈ V) → (𝑌 supp 0 ) = {𝑥𝐼 ∣ (𝑌𝑥) ≠ 0 })
4846, 1, 42, 47syl3anc 1326 . 2 (𝜑 → (𝑌 supp 0 ) = {𝑥𝐼 ∣ (𝑌𝑥) ≠ 0 })
4934, 44, 483eqtr4d 2666 1 (𝜑 → (((𝐼 × {𝑋}) ∘𝑓 · 𝑌) supp 0 ) = (𝑌 supp 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  {crab 2916  Vcvv 3200  {csn 4177  cmpt 4729   × cxp 5112   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  𝑓 cof 6895   supp csupp 7295  Basecbs 15857  .rcmulr 15942  0gc0g 16100  Ringcrg 18547  RLRegcrlreg 19279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-mgp 18490  df-ring 18549  df-rlreg 19283
This theorem is referenced by:  mdegvsca  23836  deg1mul3  23875
  Copyright terms: Public domain W3C validator