MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrgsupp Structured version   Visualization version   Unicode version

Theorem rrgsupp 19291
Description: Left multiplication by a left regular element does not change the support set of a vector. (Contributed by Stefan O'Rear, 28-Mar-2015.) (Revised by AV, 20-Jul-2019.)
Hypotheses
Ref Expression
rrgval.e  |-  E  =  (RLReg `  R )
rrgval.b  |-  B  =  ( Base `  R
)
rrgval.t  |-  .x.  =  ( .r `  R )
rrgval.z  |-  .0.  =  ( 0g `  R )
rrgsupp.i  |-  ( ph  ->  I  e.  V )
rrgsupp.r  |-  ( ph  ->  R  e.  Ring )
rrgsupp.x  |-  ( ph  ->  X  e.  E )
rrgsupp.y  |-  ( ph  ->  Y : I --> B )
Assertion
Ref Expression
rrgsupp  |-  ( ph  ->  ( ( ( I  X.  { X }
)  oF  .x.  Y ) supp  .0.  )  =  ( Y supp  .0.  ) )

Proof of Theorem rrgsupp
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rrgsupp.i . . . . . . . . 9  |-  ( ph  ->  I  e.  V )
2 rrgsupp.x . . . . . . . . . 10  |-  ( ph  ->  X  e.  E )
32adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  I )  ->  X  e.  E )
4 fvexd 6203 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  I )  ->  ( Y `  y )  e.  _V )
5 fconstmpt 5163 . . . . . . . . . 10  |-  ( I  X.  { X }
)  =  ( y  e.  I  |->  X )
65a1i 11 . . . . . . . . 9  |-  ( ph  ->  ( I  X.  { X } )  =  ( y  e.  I  |->  X ) )
7 rrgsupp.y . . . . . . . . . 10  |-  ( ph  ->  Y : I --> B )
87feqmptd 6249 . . . . . . . . 9  |-  ( ph  ->  Y  =  ( y  e.  I  |->  ( Y `
 y ) ) )
91, 3, 4, 6, 8offval2 6914 . . . . . . . 8  |-  ( ph  ->  ( ( I  X.  { X } )  oF  .x.  Y )  =  ( y  e.  I  |->  ( X  .x.  ( Y `  y ) ) ) )
109adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  (
( I  X.  { X } )  oF  .x.  Y )  =  ( y  e.  I  |->  ( X  .x.  ( Y `  y )
) ) )
1110fveq1d 6193 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  (
( ( I  X.  { X } )  oF  .x.  Y ) `
 x )  =  ( ( y  e.  I  |->  ( X  .x.  ( Y `  y ) ) ) `  x
) )
12 simpr 477 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  x  e.  I )
13 ovex 6678 . . . . . . 7  |-  ( X 
.x.  ( Y `  x ) )  e. 
_V
14 fveq2 6191 . . . . . . . . 9  |-  ( y  =  x  ->  ( Y `  y )  =  ( Y `  x ) )
1514oveq2d 6666 . . . . . . . 8  |-  ( y  =  x  ->  ( X  .x.  ( Y `  y ) )  =  ( X  .x.  ( Y `  x )
) )
16 eqid 2622 . . . . . . . 8  |-  ( y  e.  I  |->  ( X 
.x.  ( Y `  y ) ) )  =  ( y  e.  I  |->  ( X  .x.  ( Y `  y ) ) )
1715, 16fvmptg 6280 . . . . . . 7  |-  ( ( x  e.  I  /\  ( X  .x.  ( Y `
 x ) )  e.  _V )  -> 
( ( y  e.  I  |->  ( X  .x.  ( Y `  y ) ) ) `  x
)  =  ( X 
.x.  ( Y `  x ) ) )
1812, 13, 17sylancl 694 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  (
( y  e.  I  |->  ( X  .x.  ( Y `  y )
) ) `  x
)  =  ( X 
.x.  ( Y `  x ) ) )
1911, 18eqtrd 2656 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  (
( ( I  X.  { X } )  oF  .x.  Y ) `
 x )  =  ( X  .x.  ( Y `  x )
) )
2019neeq1d 2853 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  (
( ( ( I  X.  { X }
)  oF  .x.  Y ) `  x
)  =/=  .0.  <->  ( X  .x.  ( Y `  x
) )  =/=  .0.  ) )
2120rabbidva 3188 . . 3  |-  ( ph  ->  { x  e.  I  |  ( ( ( I  X.  { X } )  oF  .x.  Y ) `  x )  =/=  .0.  }  =  { x  e.  I  |  ( X 
.x.  ( Y `  x ) )  =/= 
.0.  } )
22 rrgsupp.r . . . . . . 7  |-  ( ph  ->  R  e.  Ring )
2322adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  R  e.  Ring )
242adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  X  e.  E )
257ffvelrnda 6359 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  ( Y `  x )  e.  B )
26 rrgval.e . . . . . . 7  |-  E  =  (RLReg `  R )
27 rrgval.b . . . . . . 7  |-  B  =  ( Base `  R
)
28 rrgval.t . . . . . . 7  |-  .x.  =  ( .r `  R )
29 rrgval.z . . . . . . 7  |-  .0.  =  ( 0g `  R )
3026, 27, 28, 29rrgeq0 19290 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  E  /\  ( Y `  x )  e.  B )  ->  (
( X  .x.  ( Y `  x )
)  =  .0.  <->  ( Y `  x )  =  .0.  ) )
3123, 24, 25, 30syl3anc 1326 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  (
( X  .x.  ( Y `  x )
)  =  .0.  <->  ( Y `  x )  =  .0.  ) )
3231necon3bid 2838 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  (
( X  .x.  ( Y `  x )
)  =/=  .0.  <->  ( Y `  x )  =/=  .0.  ) )
3332rabbidva 3188 . . 3  |-  ( ph  ->  { x  e.  I  |  ( X  .x.  ( Y `  x ) )  =/=  .0.  }  =  { x  e.  I  |  ( Y `  x )  =/=  .0.  } )
3421, 33eqtrd 2656 . 2  |-  ( ph  ->  { x  e.  I  |  ( ( ( I  X.  { X } )  oF  .x.  Y ) `  x )  =/=  .0.  }  =  { x  e.  I  |  ( Y `
 x )  =/= 
.0.  } )
35 ovex 6678 . . . . . 6  |-  ( X 
.x.  ( Y `  y ) )  e. 
_V
3635, 16fnmpti 6022 . . . . 5  |-  ( y  e.  I  |->  ( X 
.x.  ( Y `  y ) ) )  Fn  I
37 fneq1 5979 . . . . 5  |-  ( ( ( I  X.  { X } )  oF  .x.  Y )  =  ( y  e.  I  |->  ( X  .x.  ( Y `  y )
) )  ->  (
( ( I  X.  { X } )  oF  .x.  Y )  Fn  I  <->  ( y  e.  I  |->  ( X 
.x.  ( Y `  y ) ) )  Fn  I ) )
3836, 37mpbiri 248 . . . 4  |-  ( ( ( I  X.  { X } )  oF  .x.  Y )  =  ( y  e.  I  |->  ( X  .x.  ( Y `  y )
) )  ->  (
( I  X.  { X } )  oF  .x.  Y )  Fn  I )
399, 38syl 17 . . 3  |-  ( ph  ->  ( ( I  X.  { X } )  oF  .x.  Y )  Fn  I )
40 fvex 6201 . . . . 5  |-  ( 0g
`  R )  e. 
_V
4129, 40eqeltri 2697 . . . 4  |-  .0.  e.  _V
4241a1i 11 . . 3  |-  ( ph  ->  .0.  e.  _V )
43 suppvalfn 7302 . . 3  |-  ( ( ( ( I  X.  { X } )  oF  .x.  Y )  Fn  I  /\  I  e.  V  /\  .0.  e.  _V )  ->  ( ( ( I  X.  { X } )  oF  .x.  Y ) supp  .0.  )  =  { x  e.  I  |  (
( ( I  X.  { X } )  oF  .x.  Y ) `
 x )  =/= 
.0.  } )
4439, 1, 42, 43syl3anc 1326 . 2  |-  ( ph  ->  ( ( ( I  X.  { X }
)  oF  .x.  Y ) supp  .0.  )  =  { x  e.  I  |  ( ( ( I  X.  { X } )  oF  .x.  Y ) `  x )  =/=  .0.  } )
45 ffn 6045 . . . 4  |-  ( Y : I --> B  ->  Y  Fn  I )
467, 45syl 17 . . 3  |-  ( ph  ->  Y  Fn  I )
47 suppvalfn 7302 . . 3  |-  ( ( Y  Fn  I  /\  I  e.  V  /\  .0.  e.  _V )  -> 
( Y supp  .0.  )  =  { x  e.  I  |  ( Y `  x )  =/=  .0.  } )
4846, 1, 42, 47syl3anc 1326 . 2  |-  ( ph  ->  ( Y supp  .0.  )  =  { x  e.  I  |  ( Y `  x )  =/=  .0.  } )
4934, 44, 483eqtr4d 2666 1  |-  ( ph  ->  ( ( ( I  X.  { X }
)  oF  .x.  Y ) supp  .0.  )  =  ( Y supp  .0.  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916   _Vcvv 3200   {csn 4177    |-> cmpt 4729    X. cxp 5112    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895   supp csupp 7295   Basecbs 15857   .rcmulr 15942   0gc0g 16100   Ringcrg 18547  RLRegcrlreg 19279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-mgp 18490  df-ring 18549  df-rlreg 19283
This theorem is referenced by:  mdegvsca  23836  deg1mul3  23875
  Copyright terms: Public domain W3C validator