![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrnval | Structured version Visualization version GIF version |
Description: The n-dimensional Euclidean space. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Sep-2015.) |
Ref | Expression |
---|---|
rrnval.1 | ⊢ 𝑋 = (ℝ ↑𝑚 𝐼) |
Ref | Expression |
---|---|
rrnval | ⊢ (𝐼 ∈ Fin → (ℝn‘𝐼) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 6658 | . . . 4 ⊢ (𝑖 = 𝐼 → (ℝ ↑𝑚 𝑖) = (ℝ ↑𝑚 𝐼)) | |
2 | rrnval.1 | . . . 4 ⊢ 𝑋 = (ℝ ↑𝑚 𝐼) | |
3 | 1, 2 | syl6eqr 2674 | . . 3 ⊢ (𝑖 = 𝐼 → (ℝ ↑𝑚 𝑖) = 𝑋) |
4 | sumeq1 14419 | . . . 4 ⊢ (𝑖 = 𝐼 → Σ𝑘 ∈ 𝑖 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2) = Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) | |
5 | 4 | fveq2d 6195 | . . 3 ⊢ (𝑖 = 𝐼 → (√‘Σ𝑘 ∈ 𝑖 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) = (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2))) |
6 | 3, 3, 5 | mpt2eq123dv 6717 | . 2 ⊢ (𝑖 = 𝐼 → (𝑥 ∈ (ℝ ↑𝑚 𝑖), 𝑦 ∈ (ℝ ↑𝑚 𝑖) ↦ (√‘Σ𝑘 ∈ 𝑖 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2))) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)))) |
7 | df-rrn 33625 | . 2 ⊢ ℝn = (𝑖 ∈ Fin ↦ (𝑥 ∈ (ℝ ↑𝑚 𝑖), 𝑦 ∈ (ℝ ↑𝑚 𝑖) ↦ (√‘Σ𝑘 ∈ 𝑖 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)))) | |
8 | fvrn0 6216 | . . . . 5 ⊢ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) ∈ (ran √ ∪ {∅}) | |
9 | 8 | rgen2w 2925 | . . . 4 ⊢ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) ∈ (ran √ ∪ {∅}) |
10 | eqid 2622 | . . . . 5 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2))) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2))) | |
11 | 10 | fmpt2 7237 | . . . 4 ⊢ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)) ∈ (ran √ ∪ {∅}) ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2))):(𝑋 × 𝑋)⟶(ran √ ∪ {∅})) |
12 | 9, 11 | mpbi 220 | . . 3 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2))):(𝑋 × 𝑋)⟶(ran √ ∪ {∅}) |
13 | ovex 6678 | . . . . 5 ⊢ (ℝ ↑𝑚 𝐼) ∈ V | |
14 | 2, 13 | eqeltri 2697 | . . . 4 ⊢ 𝑋 ∈ V |
15 | 14, 14 | xpex 6962 | . . 3 ⊢ (𝑋 × 𝑋) ∈ V |
16 | cnex 10017 | . . . . 5 ⊢ ℂ ∈ V | |
17 | sqrtf 14103 | . . . . . 6 ⊢ √:ℂ⟶ℂ | |
18 | frn 6053 | . . . . . 6 ⊢ (√:ℂ⟶ℂ → ran √ ⊆ ℂ) | |
19 | 17, 18 | ax-mp 5 | . . . . 5 ⊢ ran √ ⊆ ℂ |
20 | 16, 19 | ssexi 4803 | . . . 4 ⊢ ran √ ∈ V |
21 | p0ex 4853 | . . . 4 ⊢ {∅} ∈ V | |
22 | 20, 21 | unex 6956 | . . 3 ⊢ (ran √ ∪ {∅}) ∈ V |
23 | fex2 7121 | . . 3 ⊢ (((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2))):(𝑋 × 𝑋)⟶(ran √ ∪ {∅}) ∧ (𝑋 × 𝑋) ∈ V ∧ (ran √ ∪ {∅}) ∈ V) → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2))) ∈ V) | |
24 | 12, 15, 22, 23 | mp3an 1424 | . 2 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2))) ∈ V |
25 | 6, 7, 24 | fvmpt 6282 | 1 ⊢ (𝐼 ∈ Fin → (ℝn‘𝐼) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 ∀wral 2912 Vcvv 3200 ∪ cun 3572 ⊆ wss 3574 ∅c0 3915 {csn 4177 × cxp 5112 ran crn 5115 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 ↦ cmpt2 6652 ↑𝑚 cmap 7857 Fincfn 7955 ℂcc 9934 ℝcr 9935 − cmin 10266 2c2 11070 ↑cexp 12860 √csqrt 13973 Σcsu 14416 ℝncrrn 33624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-sum 14417 df-rrn 33625 |
This theorem is referenced by: rrnmval 33627 rrnmet 33628 |
Copyright terms: Public domain | W3C validator |