Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrnmet Structured version   Visualization version   GIF version

Theorem rrnmet 33628
Description: Euclidean space is a metric space. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 5-Jun-2014.)
Hypothesis
Ref Expression
rrnval.1 𝑋 = (ℝ ↑𝑚 𝐼)
Assertion
Ref Expression
rrnmet (𝐼 ∈ Fin → (ℝn𝐼) ∈ (Met‘𝑋))

Proof of Theorem rrnmet
Dummy variables 𝑘 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . . . . . 7 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝐼 ∈ Fin)
2 simprl 794 . . . . . . . . . . . 12 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝑥𝑋)
3 rrnval.1 . . . . . . . . . . . 12 𝑋 = (ℝ ↑𝑚 𝐼)
42, 3syl6eleq 2711 . . . . . . . . . . 11 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝑥 ∈ (ℝ ↑𝑚 𝐼))
5 elmapi 7879 . . . . . . . . . . 11 (𝑥 ∈ (ℝ ↑𝑚 𝐼) → 𝑥:𝐼⟶ℝ)
64, 5syl 17 . . . . . . . . . 10 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝑥:𝐼⟶ℝ)
76ffvelrnda 6359 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (𝑥𝑘) ∈ ℝ)
8 simprr 796 . . . . . . . . . . . 12 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝑦𝑋)
98, 3syl6eleq 2711 . . . . . . . . . . 11 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝑦 ∈ (ℝ ↑𝑚 𝐼))
10 elmapi 7879 . . . . . . . . . . 11 (𝑦 ∈ (ℝ ↑𝑚 𝐼) → 𝑦:𝐼⟶ℝ)
119, 10syl 17 . . . . . . . . . 10 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝑦:𝐼⟶ℝ)
1211ffvelrnda 6359 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (𝑦𝑘) ∈ ℝ)
137, 12resubcld 10458 . . . . . . . 8 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → ((𝑥𝑘) − (𝑦𝑘)) ∈ ℝ)
1413resqcld 13035 . . . . . . 7 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (((𝑥𝑘) − (𝑦𝑘))↑2) ∈ ℝ)
151, 14fsumrecl 14465 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2) ∈ ℝ)
1613sqge0d 13036 . . . . . . 7 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → 0 ≤ (((𝑥𝑘) − (𝑦𝑘))↑2))
171, 14, 16fsumge0 14527 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 0 ≤ Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))
1815, 17resqrtcld 14156 . . . . 5 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) ∈ ℝ)
1918ralrimivva 2971 . . . 4 (𝐼 ∈ Fin → ∀𝑥𝑋𝑦𝑋 (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) ∈ ℝ)
20 eqid 2622 . . . . 5 (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))) = (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)))
2120fmpt2 7237 . . . 4 (∀𝑥𝑋𝑦𝑋 (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) ∈ ℝ ↔ (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))):(𝑋 × 𝑋)⟶ℝ)
2219, 21sylib 208 . . 3 (𝐼 ∈ Fin → (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))):(𝑋 × 𝑋)⟶ℝ)
233rrnval 33626 . . . 4 (𝐼 ∈ Fin → (ℝn𝐼) = (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))))
2423feq1d 6030 . . 3 (𝐼 ∈ Fin → ((ℝn𝐼):(𝑋 × 𝑋)⟶ℝ ↔ (𝑥𝑋, 𝑦𝑋 ↦ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))):(𝑋 × 𝑋)⟶ℝ))
2522, 24mpbird 247 . 2 (𝐼 ∈ Fin → (ℝn𝐼):(𝑋 × 𝑋)⟶ℝ)
26 sqrt00 14004 . . . . . . . 8 ((Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2) ∈ ℝ ∧ 0 ≤ Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) → ((√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) = 0 ↔ Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2) = 0))
2715, 17, 26syl2anc 693 . . . . . . 7 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ((√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) = 0 ↔ Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2) = 0))
281, 14, 16fsum00 14530 . . . . . . 7 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ ∀𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2) = 0))
2927, 28bitrd 268 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ((√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) = 0 ↔ ∀𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2) = 0))
3013recnd 10068 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → ((𝑥𝑘) − (𝑦𝑘)) ∈ ℂ)
31 sqeq0 12927 . . . . . . . . 9 (((𝑥𝑘) − (𝑦𝑘)) ∈ ℂ → ((((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ ((𝑥𝑘) − (𝑦𝑘)) = 0))
3230, 31syl 17 . . . . . . . 8 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → ((((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ ((𝑥𝑘) − (𝑦𝑘)) = 0))
337recnd 10068 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (𝑥𝑘) ∈ ℂ)
3412recnd 10068 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (𝑦𝑘) ∈ ℂ)
3533, 34subeq0ad 10402 . . . . . . . 8 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → (((𝑥𝑘) − (𝑦𝑘)) = 0 ↔ (𝑥𝑘) = (𝑦𝑘)))
3632, 35bitrd 268 . . . . . . 7 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑘𝐼) → ((((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ (𝑥𝑘) = (𝑦𝑘)))
3736ralbidva 2985 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (∀𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2) = 0 ↔ ∀𝑘𝐼 (𝑥𝑘) = (𝑦𝑘)))
3829, 37bitrd 268 . . . . 5 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ((√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) = 0 ↔ ∀𝑘𝐼 (𝑥𝑘) = (𝑦𝑘)))
393rrnmval 33627 . . . . . . 7 ((𝐼 ∈ Fin ∧ 𝑥𝑋𝑦𝑋) → (𝑥(ℝn𝐼)𝑦) = (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)))
40393expb 1266 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (𝑥(ℝn𝐼)𝑦) = (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)))
4140eqeq1d 2624 . . . . 5 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥(ℝn𝐼)𝑦) = 0 ↔ (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) = 0))
42 ffn 6045 . . . . . . 7 (𝑥:𝐼⟶ℝ → 𝑥 Fn 𝐼)
436, 42syl 17 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝑥 Fn 𝐼)
44 ffn 6045 . . . . . . 7 (𝑦:𝐼⟶ℝ → 𝑦 Fn 𝐼)
4511, 44syl 17 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → 𝑦 Fn 𝐼)
46 eqfnfv 6311 . . . . . 6 ((𝑥 Fn 𝐼𝑦 Fn 𝐼) → (𝑥 = 𝑦 ↔ ∀𝑘𝐼 (𝑥𝑘) = (𝑦𝑘)))
4743, 45, 46syl2anc 693 . . . . 5 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 = 𝑦 ↔ ∀𝑘𝐼 (𝑥𝑘) = (𝑦𝑘)))
4838, 41, 473bitr4d 300 . . . 4 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ((𝑥(ℝn𝐼)𝑦) = 0 ↔ 𝑥 = 𝑦))
49 simpll 790 . . . . . . . 8 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → 𝐼 ∈ Fin)
507adantlr 751 . . . . . . . . 9 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑥𝑘) ∈ ℝ)
51 simpr 477 . . . . . . . . . . . 12 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → 𝑧𝑋)
5251, 3syl6eleq 2711 . . . . . . . . . . 11 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → 𝑧 ∈ (ℝ ↑𝑚 𝐼))
53 elmapi 7879 . . . . . . . . . . 11 (𝑧 ∈ (ℝ ↑𝑚 𝐼) → 𝑧:𝐼⟶ℝ)
5452, 53syl 17 . . . . . . . . . 10 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → 𝑧:𝐼⟶ℝ)
5554ffvelrnda 6359 . . . . . . . . 9 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑧𝑘) ∈ ℝ)
5650, 55resubcld 10458 . . . . . . . 8 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → ((𝑥𝑘) − (𝑧𝑘)) ∈ ℝ)
5712adantlr 751 . . . . . . . . 9 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑦𝑘) ∈ ℝ)
5855, 57resubcld 10458 . . . . . . . 8 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → ((𝑧𝑘) − (𝑦𝑘)) ∈ ℝ)
5949, 56, 58trirn 23183 . . . . . . 7 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (√‘Σ𝑘𝐼 ((((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘)))↑2)) ≤ ((√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑧𝑘))↑2)) + (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑦𝑘))↑2))))
6033adantlr 751 . . . . . . . . . . 11 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑥𝑘) ∈ ℂ)
6155recnd 10068 . . . . . . . . . . 11 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑧𝑘) ∈ ℂ)
6234adantlr 751 . . . . . . . . . . 11 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (𝑦𝑘) ∈ ℂ)
6360, 61, 62npncand 10416 . . . . . . . . . 10 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘))) = ((𝑥𝑘) − (𝑦𝑘)))
6463oveq1d 6665 . . . . . . . . 9 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → ((((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘)))↑2) = (((𝑥𝑘) − (𝑦𝑘))↑2))
6564sumeq2dv 14433 . . . . . . . 8 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → Σ𝑘𝐼 ((((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘)))↑2) = Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2))
6665fveq2d 6195 . . . . . . 7 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (√‘Σ𝑘𝐼 ((((𝑥𝑘) − (𝑧𝑘)) + ((𝑧𝑘) − (𝑦𝑘)))↑2)) = (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)))
67 sqsubswap 12924 . . . . . . . . . . 11 (((𝑥𝑘) ∈ ℂ ∧ (𝑧𝑘) ∈ ℂ) → (((𝑥𝑘) − (𝑧𝑘))↑2) = (((𝑧𝑘) − (𝑥𝑘))↑2))
6860, 61, 67syl2anc 693 . . . . . . . . . 10 ((((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) ∧ 𝑘𝐼) → (((𝑥𝑘) − (𝑧𝑘))↑2) = (((𝑧𝑘) − (𝑥𝑘))↑2))
6968sumeq2dv 14433 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → Σ𝑘𝐼 (((𝑥𝑘) − (𝑧𝑘))↑2) = Σ𝑘𝐼 (((𝑧𝑘) − (𝑥𝑘))↑2))
7069fveq2d 6195 . . . . . . . 8 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑧𝑘))↑2)) = (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑥𝑘))↑2)))
7170oveq1d 6665 . . . . . . 7 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → ((√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑧𝑘))↑2)) + (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑦𝑘))↑2))) = ((√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑦𝑘))↑2))))
7259, 66, 713brtr3d 4684 . . . . . 6 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)) ≤ ((√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑦𝑘))↑2))))
7340adantr 481 . . . . . 6 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (𝑥(ℝn𝐼)𝑦) = (√‘Σ𝑘𝐼 (((𝑥𝑘) − (𝑦𝑘))↑2)))
743rrnmval 33627 . . . . . . . . . 10 ((𝐼 ∈ Fin ∧ 𝑧𝑋𝑥𝑋) → (𝑧(ℝn𝐼)𝑥) = (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑥𝑘))↑2)))
75743adant3r 1323 . . . . . . . . 9 ((𝐼 ∈ Fin ∧ 𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑧(ℝn𝐼)𝑥) = (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑥𝑘))↑2)))
763rrnmval 33627 . . . . . . . . . 10 ((𝐼 ∈ Fin ∧ 𝑧𝑋𝑦𝑋) → (𝑧(ℝn𝐼)𝑦) = (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑦𝑘))↑2)))
77763adant3l 1322 . . . . . . . . 9 ((𝐼 ∈ Fin ∧ 𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → (𝑧(ℝn𝐼)𝑦) = (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑦𝑘))↑2)))
7875, 77oveq12d 6668 . . . . . . . 8 ((𝐼 ∈ Fin ∧ 𝑧𝑋 ∧ (𝑥𝑋𝑦𝑋)) → ((𝑧(ℝn𝐼)𝑥) + (𝑧(ℝn𝐼)𝑦)) = ((√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑦𝑘))↑2))))
79783expa 1265 . . . . . . 7 (((𝐼 ∈ Fin ∧ 𝑧𝑋) ∧ (𝑥𝑋𝑦𝑋)) → ((𝑧(ℝn𝐼)𝑥) + (𝑧(ℝn𝐼)𝑦)) = ((√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑦𝑘))↑2))))
8079an32s 846 . . . . . 6 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → ((𝑧(ℝn𝐼)𝑥) + (𝑧(ℝn𝐼)𝑦)) = ((√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑥𝑘))↑2)) + (√‘Σ𝑘𝐼 (((𝑧𝑘) − (𝑦𝑘))↑2))))
8172, 73, 803brtr4d 4685 . . . . 5 (((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) ∧ 𝑧𝑋) → (𝑥(ℝn𝐼)𝑦) ≤ ((𝑧(ℝn𝐼)𝑥) + (𝑧(ℝn𝐼)𝑦)))
8281ralrimiva 2966 . . . 4 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → ∀𝑧𝑋 (𝑥(ℝn𝐼)𝑦) ≤ ((𝑧(ℝn𝐼)𝑥) + (𝑧(ℝn𝐼)𝑦)))
8348, 82jca 554 . . 3 ((𝐼 ∈ Fin ∧ (𝑥𝑋𝑦𝑋)) → (((𝑥(ℝn𝐼)𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥(ℝn𝐼)𝑦) ≤ ((𝑧(ℝn𝐼)𝑥) + (𝑧(ℝn𝐼)𝑦))))
8483ralrimivva 2971 . 2 (𝐼 ∈ Fin → ∀𝑥𝑋𝑦𝑋 (((𝑥(ℝn𝐼)𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥(ℝn𝐼)𝑦) ≤ ((𝑧(ℝn𝐼)𝑥) + (𝑧(ℝn𝐼)𝑦))))
85 ovex 6678 . . . 4 (ℝ ↑𝑚 𝐼) ∈ V
863, 85eqeltri 2697 . . 3 𝑋 ∈ V
87 ismet 22128 . . 3 (𝑋 ∈ V → ((ℝn𝐼) ∈ (Met‘𝑋) ↔ ((ℝn𝐼):(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥(ℝn𝐼)𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥(ℝn𝐼)𝑦) ≤ ((𝑧(ℝn𝐼)𝑥) + (𝑧(ℝn𝐼)𝑦))))))
8886, 87ax-mp 5 . 2 ((ℝn𝐼) ∈ (Met‘𝑋) ↔ ((ℝn𝐼):(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥𝑋𝑦𝑋 (((𝑥(ℝn𝐼)𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧𝑋 (𝑥(ℝn𝐼)𝑦) ≤ ((𝑧(ℝn𝐼)𝑥) + (𝑧(ℝn𝐼)𝑦)))))
8925, 84, 88sylanbrc 698 1 (𝐼 ∈ Fin → (ℝn𝐼) ∈ (Met‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200   class class class wbr 4653   × cxp 5112   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  𝑚 cmap 7857  Fincfn 7955  cc 9934  cr 9935  0cc0 9936   + caddc 9939  cle 10075  cmin 10266  2c2 11070  cexp 12860  csqrt 13973  Σcsu 14416  Metcme 19732  ncrrn 33624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-met 19740  df-rrn 33625
This theorem is referenced by:  rrncmslem  33631  rrncms  33632  rrnequiv  33634  rrntotbnd  33635  rrnheibor  33636  ismrer1  33637  reheibor  33638
  Copyright terms: Public domain W3C validator