MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subfzo0 Structured version   Visualization version   GIF version

Theorem subfzo0 12590
Description: The difference between two elements in a half-open range of nonnegative integers is greater than the negation of the upper bound and less than the upper bound of the range. (Contributed by AV, 20-Mar-2021.)
Assertion
Ref Expression
subfzo0 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁)) → (-𝑁 < (𝐼𝐽) ∧ (𝐼𝐽) < 𝑁))

Proof of Theorem subfzo0
StepHypRef Expression
1 elfzo0 12508 . . 3 (𝐼 ∈ (0..^𝑁) ↔ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁))
2 elfzo0 12508 . . . . 5 (𝐽 ∈ (0..^𝑁) ↔ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁))
3 nn0re 11301 . . . . . . . . . . . 12 (𝐼 ∈ ℕ0𝐼 ∈ ℝ)
43adantr 481 . . . . . . . . . . 11 ((𝐼 ∈ ℕ0𝐼 < 𝑁) → 𝐼 ∈ ℝ)
5 nnre 11027 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
6 nn0re 11301 . . . . . . . . . . . . . 14 (𝐽 ∈ ℕ0𝐽 ∈ ℝ)
7 resubcl 10345 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 𝐽 ∈ ℝ) → (𝑁𝐽) ∈ ℝ)
85, 6, 7syl2an 494 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝐽 ∈ ℕ0) → (𝑁𝐽) ∈ ℝ)
98ancoms 469 . . . . . . . . . . . 12 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → (𝑁𝐽) ∈ ℝ)
1093adant3 1081 . . . . . . . . . . 11 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝑁𝐽) ∈ ℝ)
114, 10anim12i 590 . . . . . . . . . 10 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝐼 ∈ ℝ ∧ (𝑁𝐽) ∈ ℝ))
12 nn0ge0 11318 . . . . . . . . . . . 12 (𝐼 ∈ ℕ0 → 0 ≤ 𝐼)
1312adantr 481 . . . . . . . . . . 11 ((𝐼 ∈ ℕ0𝐼 < 𝑁) → 0 ≤ 𝐼)
14 posdif 10521 . . . . . . . . . . . . 13 ((𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐽 < 𝑁 ↔ 0 < (𝑁𝐽)))
156, 5, 14syl2an 494 . . . . . . . . . . . 12 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → (𝐽 < 𝑁 ↔ 0 < (𝑁𝐽)))
1615biimp3a 1432 . . . . . . . . . . 11 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 0 < (𝑁𝐽))
1713, 16anim12i 590 . . . . . . . . . 10 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (0 ≤ 𝐼 ∧ 0 < (𝑁𝐽)))
18 addgegt0 10515 . . . . . . . . . 10 (((𝐼 ∈ ℝ ∧ (𝑁𝐽) ∈ ℝ) ∧ (0 ≤ 𝐼 ∧ 0 < (𝑁𝐽))) → 0 < (𝐼 + (𝑁𝐽)))
1911, 17, 18syl2anc 693 . . . . . . . . 9 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 0 < (𝐼 + (𝑁𝐽)))
20 nn0cn 11302 . . . . . . . . . . . 12 (𝐼 ∈ ℕ0𝐼 ∈ ℂ)
2120adantr 481 . . . . . . . . . . 11 ((𝐼 ∈ ℕ0𝐼 < 𝑁) → 𝐼 ∈ ℂ)
2221adantr 481 . . . . . . . . . 10 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝐼 ∈ ℂ)
23 nn0cn 11302 . . . . . . . . . . . 12 (𝐽 ∈ ℕ0𝐽 ∈ ℂ)
24233ad2ant1 1082 . . . . . . . . . . 11 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝐽 ∈ ℂ)
2524adantl 482 . . . . . . . . . 10 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝐽 ∈ ℂ)
26 nncn 11028 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
27263ad2ant2 1083 . . . . . . . . . . 11 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝑁 ∈ ℂ)
2827adantl 482 . . . . . . . . . 10 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝑁 ∈ ℂ)
2922, 25, 28subadd23d 10414 . . . . . . . . 9 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → ((𝐼𝐽) + 𝑁) = (𝐼 + (𝑁𝐽)))
3019, 29breqtrrd 4681 . . . . . . . 8 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 0 < ((𝐼𝐽) + 𝑁))
3163ad2ant1 1082 . . . . . . . . . 10 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝐽 ∈ ℝ)
32 resubcl 10345 . . . . . . . . . 10 ((𝐼 ∈ ℝ ∧ 𝐽 ∈ ℝ) → (𝐼𝐽) ∈ ℝ)
334, 31, 32syl2an 494 . . . . . . . . 9 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝐼𝐽) ∈ ℝ)
3453ad2ant2 1083 . . . . . . . . . 10 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝑁 ∈ ℝ)
3534adantl 482 . . . . . . . . 9 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝑁 ∈ ℝ)
3633, 35possumd 10652 . . . . . . . 8 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (0 < ((𝐼𝐽) + 𝑁) ↔ -𝑁 < (𝐼𝐽)))
3730, 36mpbid 222 . . . . . . 7 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → -𝑁 < (𝐼𝐽))
383adantr 481 . . . . . . . . . . . 12 ((𝐼 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝐼 ∈ ℝ)
3934adantl 482 . . . . . . . . . . . 12 ((𝐼 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝑁 ∈ ℝ)
40 readdcl 10019 . . . . . . . . . . . . . . 15 ((𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐽 + 𝑁) ∈ ℝ)
416, 5, 40syl2an 494 . . . . . . . . . . . . . 14 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → (𝐽 + 𝑁) ∈ ℝ)
42413adant3 1081 . . . . . . . . . . . . 13 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐽 + 𝑁) ∈ ℝ)
4342adantl 482 . . . . . . . . . . . 12 ((𝐼 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝐽 + 𝑁) ∈ ℝ)
4438, 39, 433jca 1242 . . . . . . . . . . 11 ((𝐼 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝐼 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝐽 + 𝑁) ∈ ℝ))
45 nn0ge0 11318 . . . . . . . . . . . . . 14 (𝐽 ∈ ℕ0 → 0 ≤ 𝐽)
46453ad2ant1 1082 . . . . . . . . . . . . 13 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 0 ≤ 𝐽)
4746adantl 482 . . . . . . . . . . . 12 ((𝐼 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 0 ≤ 𝐽)
485, 6anim12i 590 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝐽 ∈ ℕ0) → (𝑁 ∈ ℝ ∧ 𝐽 ∈ ℝ))
4948ancoms 469 . . . . . . . . . . . . . . 15 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → (𝑁 ∈ ℝ ∧ 𝐽 ∈ ℝ))
50493adant3 1081 . . . . . . . . . . . . . 14 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝑁 ∈ ℝ ∧ 𝐽 ∈ ℝ))
5150adantl 482 . . . . . . . . . . . . 13 ((𝐼 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝑁 ∈ ℝ ∧ 𝐽 ∈ ℝ))
52 addge02 10539 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 𝐽 ∈ ℝ) → (0 ≤ 𝐽𝑁 ≤ (𝐽 + 𝑁)))
5351, 52syl 17 . . . . . . . . . . . 12 ((𝐼 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (0 ≤ 𝐽𝑁 ≤ (𝐽 + 𝑁)))
5447, 53mpbid 222 . . . . . . . . . . 11 ((𝐼 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝑁 ≤ (𝐽 + 𝑁))
5544, 54lelttrdi 10199 . . . . . . . . . 10 ((𝐼 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝐼 < 𝑁𝐼 < (𝐽 + 𝑁)))
5655impancom 456 . . . . . . . . 9 ((𝐼 ∈ ℕ0𝐼 < 𝑁) → ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝐼 < (𝐽 + 𝑁)))
5756imp 445 . . . . . . . 8 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝐼 < (𝐽 + 𝑁))
584adantr 481 . . . . . . . . 9 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝐼 ∈ ℝ)
5931adantl 482 . . . . . . . . 9 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝐽 ∈ ℝ)
6058, 59, 35ltsubadd2d 10625 . . . . . . . 8 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → ((𝐼𝐽) < 𝑁𝐼 < (𝐽 + 𝑁)))
6157, 60mpbird 247 . . . . . . 7 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝐼𝐽) < 𝑁)
6237, 61jca 554 . . . . . 6 (((𝐼 ∈ ℕ0𝐼 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (-𝑁 < (𝐼𝐽) ∧ (𝐼𝐽) < 𝑁))
6362ex 450 . . . . 5 ((𝐼 ∈ ℕ0𝐼 < 𝑁) → ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (-𝑁 < (𝐼𝐽) ∧ (𝐼𝐽) < 𝑁)))
642, 63syl5bi 232 . . . 4 ((𝐼 ∈ ℕ0𝐼 < 𝑁) → (𝐽 ∈ (0..^𝑁) → (-𝑁 < (𝐼𝐽) ∧ (𝐼𝐽) < 𝑁)))
65643adant2 1080 . . 3 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁) → (𝐽 ∈ (0..^𝑁) → (-𝑁 < (𝐼𝐽) ∧ (𝐼𝐽) < 𝑁)))
661, 65sylbi 207 . 2 (𝐼 ∈ (0..^𝑁) → (𝐽 ∈ (0..^𝑁) → (-𝑁 < (𝐼𝐽) ∧ (𝐼𝐽) < 𝑁)))
6766imp 445 1 ((𝐼 ∈ (0..^𝑁) ∧ 𝐽 ∈ (0..^𝑁)) → (-𝑁 < (𝐼𝐽) ∧ (𝐼𝐽) < 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037  wcel 1990   class class class wbr 4653  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936   + caddc 9939   < clt 10074  cle 10075  cmin 10266  -cneg 10267  cn 11020  0cn0 11292  ..^cfzo 12465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466
This theorem is referenced by:  addmodlteq  12745
  Copyright terms: Public domain W3C validator