MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  injresinj Structured version   Visualization version   GIF version

Theorem injresinj 12589
Description: A function whose restriction is injective and the values of the remaining arguments are different from all other values is injective itself. (Contributed by Alexander van der Vekens, 31-Oct-2017.)
Assertion
Ref Expression
injresinj (𝐾 ∈ ℕ0 → ((𝐹:(0...𝐾)⟶𝑉 ∧ Fun (𝐹 ↾ (1..^𝐾)) ∧ (𝐹‘0) ≠ (𝐹𝐾)) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → Fun 𝐹)))

Proof of Theorem injresinj
Dummy variables 𝑣 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzo0ss1 12498 . . . . . . . . 9 (1..^𝐾) ⊆ (0..^𝐾)
2 fzossfz 12488 . . . . . . . . 9 (0..^𝐾) ⊆ (0...𝐾)
31, 2sstri 3612 . . . . . . . 8 (1..^𝐾) ⊆ (0...𝐾)
4 fssres 6070 . . . . . . . 8 ((𝐹:(0...𝐾)⟶𝑉 ∧ (1..^𝐾) ⊆ (0...𝐾)) → (𝐹 ↾ (1..^𝐾)):(1..^𝐾)⟶𝑉)
53, 4mpan2 707 . . . . . . 7 (𝐹:(0...𝐾)⟶𝑉 → (𝐹 ↾ (1..^𝐾)):(1..^𝐾)⟶𝑉)
65biantrud 528 . . . . . 6 (𝐹:(0...𝐾)⟶𝑉 → (Fun (𝐹 ↾ (1..^𝐾)) ↔ (Fun (𝐹 ↾ (1..^𝐾)) ∧ (𝐹 ↾ (1..^𝐾)):(1..^𝐾)⟶𝑉)))
7 ancom 466 . . . . . . 7 ((Fun (𝐹 ↾ (1..^𝐾)) ∧ (𝐹 ↾ (1..^𝐾)):(1..^𝐾)⟶𝑉) ↔ ((𝐹 ↾ (1..^𝐾)):(1..^𝐾)⟶𝑉 ∧ Fun (𝐹 ↾ (1..^𝐾))))
8 df-f1 5893 . . . . . . 7 ((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉 ↔ ((𝐹 ↾ (1..^𝐾)):(1..^𝐾)⟶𝑉 ∧ Fun (𝐹 ↾ (1..^𝐾))))
97, 8bitr4i 267 . . . . . 6 ((Fun (𝐹 ↾ (1..^𝐾)) ∧ (𝐹 ↾ (1..^𝐾)):(1..^𝐾)⟶𝑉) ↔ (𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉)
106, 9syl6bb 276 . . . . 5 (𝐹:(0...𝐾)⟶𝑉 → (Fun (𝐹 ↾ (1..^𝐾)) ↔ (𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉))
11 simp-4r 807 . . . . . . . . 9 ((((((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉𝐹:(0...𝐾)⟶𝑉) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ 𝐾 ∈ ℕ0) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) → 𝐹:(0...𝐾)⟶𝑉)
12 dff13 6512 . . . . . . . . . . . . . . 15 ((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉 ↔ ((𝐹 ↾ (1..^𝐾)):(1..^𝐾)⟶𝑉 ∧ ∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤)))
13 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑣 = 𝑥 → ((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑥))
1413eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑣 = 𝑥 → (((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) ↔ ((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑤)))
15 equequ1 1952 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑣 = 𝑥 → (𝑣 = 𝑤𝑥 = 𝑤))
1614, 15imbi12d 334 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑣 = 𝑥 → ((((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤) ↔ (((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑥 = 𝑤)))
17 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤 = 𝑦 → ((𝐹 ↾ (1..^𝐾))‘𝑤) = ((𝐹 ↾ (1..^𝐾))‘𝑦))
1817eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = 𝑦 → (((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑤) ↔ ((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑦)))
19 equequ2 1953 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = 𝑦 → (𝑥 = 𝑤𝑥 = 𝑦))
2018, 19imbi12d 334 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = 𝑦 → ((((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑥 = 𝑤) ↔ (((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑦) → 𝑥 = 𝑦)))
2116, 20rspc2va 3323 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) ∧ ∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤)) → (((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑦) → 𝑥 = 𝑦))
22 fvres 6207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 ∈ (1..^𝐾) → ((𝐹 ↾ (1..^𝐾))‘𝑥) = (𝐹𝑥))
2322eqcomd 2628 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥 ∈ (1..^𝐾) → (𝐹𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑥))
24 fvres 6207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 ∈ (1..^𝐾) → ((𝐹 ↾ (1..^𝐾))‘𝑦) = (𝐹𝑦))
2524eqcomd 2628 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 ∈ (1..^𝐾) → (𝐹𝑦) = ((𝐹 ↾ (1..^𝐾))‘𝑦))
2623, 25eqeqan12d 2638 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) → ((𝐹𝑥) = (𝐹𝑦) ↔ ((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑦)))
2726biimpd 219 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → ((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑦)))
2827imim1d 82 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) → ((((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑦) → 𝑥 = 𝑦) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
2928imp 445 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) ∧ (((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑦) → 𝑥 = 𝑦)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
30292a1d 26 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) ∧ (((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑦) → 𝑥 = 𝑦)) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))
31302a1d 26 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) ∧ (((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑦) → 𝑥 = 𝑦)) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))))
3231expcom 451 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐹 ↾ (1..^𝐾))‘𝑥) = ((𝐹 ↾ (1..^𝐾))‘𝑦) → 𝑥 = 𝑦) → ((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))))))
3321, 32syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) ∧ ∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤)) → ((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))))))
3433ex 450 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) → (∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤) → ((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))))))
3534pm2.43a 54 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) → (∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))))))
36 ianor 509 . . . . . . . . . . . . . . . . . . . . 21 (¬ (𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) ↔ (¬ 𝑥 ∈ (1..^𝐾) ∨ ¬ 𝑦 ∈ (1..^𝐾)))
37 eqcom 2629 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐹𝑥) = (𝐹𝑦) ↔ (𝐹𝑦) = (𝐹𝑥))
38 injresinjlem 12588 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 𝑥 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑦 ∈ (0...𝐾) ∧ 𝑥 ∈ (0...𝐾)) → ((𝐹𝑦) = (𝐹𝑥) → 𝑦 = 𝑥))))))
3938imp 445 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((¬ 𝑥 ∈ (1..^𝐾) ∧ (𝐹‘0) ≠ (𝐹𝐾)) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑦 ∈ (0...𝐾) ∧ 𝑥 ∈ (0...𝐾)) → ((𝐹𝑦) = (𝐹𝑥) → 𝑦 = 𝑥)))))
4039imp41 619 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((¬ 𝑥 ∈ (1..^𝐾) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ (𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0)) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) ∧ (𝑦 ∈ (0...𝐾) ∧ 𝑥 ∈ (0...𝐾))) → ((𝐹𝑦) = (𝐹𝑥) → 𝑦 = 𝑥))
41 eqcom 2629 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 = 𝑥𝑥 = 𝑦)
4240, 41syl6ib 241 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((¬ 𝑥 ∈ (1..^𝐾) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ (𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0)) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) ∧ (𝑦 ∈ (0...𝐾) ∧ 𝑥 ∈ (0...𝐾))) → ((𝐹𝑦) = (𝐹𝑥) → 𝑥 = 𝑦))
4337, 42syl5bi 232 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((¬ 𝑥 ∈ (1..^𝐾) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ (𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0)) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) ∧ (𝑦 ∈ (0...𝐾) ∧ 𝑥 ∈ (0...𝐾))) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
4443ex 450 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((¬ 𝑥 ∈ (1..^𝐾) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ (𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0)) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) → ((𝑦 ∈ (0...𝐾) ∧ 𝑥 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
4544ancomsd 470 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((¬ 𝑥 ∈ (1..^𝐾) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ (𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0)) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
4645exp41 638 . . . . . . . . . . . . . . . . . . . . . . 23 𝑥 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))))
47 injresinjlem 12588 . . . . . . . . . . . . . . . . . . . . . . 23 𝑦 ∈ (1..^𝐾) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))))
4846, 47jaoi 394 . . . . . . . . . . . . . . . . . . . . . 22 ((¬ 𝑥 ∈ (1..^𝐾) ∨ ¬ 𝑦 ∈ (1..^𝐾)) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))))
4948a1d 25 . . . . . . . . . . . . . . . . . . . . 21 ((¬ 𝑥 ∈ (1..^𝐾) ∨ ¬ 𝑦 ∈ (1..^𝐾)) → (∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))))))
5036, 49sylbi 207 . . . . . . . . . . . . . . . . . . . 20 (¬ (𝑥 ∈ (1..^𝐾) ∧ 𝑦 ∈ (1..^𝐾)) → (∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))))))
5135, 50pm2.61i 176 . . . . . . . . . . . . . . . . . . 19 (∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))))
5251imp41 619 . . . . . . . . . . . . . . . . . 18 ((((∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ (𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0)) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) → ((𝑥 ∈ (0...𝐾) ∧ 𝑦 ∈ (0...𝐾)) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
5352ralrimivv 2970 . . . . . . . . . . . . . . . . 17 ((((∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ (𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0)) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) → ∀𝑥 ∈ (0...𝐾)∀𝑦 ∈ (0...𝐾)((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
5453exp41 638 . . . . . . . . . . . . . . . 16 (∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ∀𝑥 ∈ (0...𝐾)∀𝑦 ∈ (0...𝐾)((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))))
5554adantl 482 . . . . . . . . . . . . . . 15 (((𝐹 ↾ (1..^𝐾)):(1..^𝐾)⟶𝑉 ∧ ∀𝑣 ∈ (1..^𝐾)∀𝑤 ∈ (1..^𝐾)(((𝐹 ↾ (1..^𝐾))‘𝑣) = ((𝐹 ↾ (1..^𝐾))‘𝑤) → 𝑣 = 𝑤)) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ∀𝑥 ∈ (0...𝐾)∀𝑦 ∈ (0...𝐾)((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))))
5612, 55sylbi 207 . . . . . . . . . . . . . 14 ((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉 → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ∀𝑥 ∈ (0...𝐾)∀𝑦 ∈ (0...𝐾)((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))))
5756com13 88 . . . . . . . . . . . . 13 ((𝐹:(0...𝐾)⟶𝑉𝐾 ∈ ℕ0) → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉 → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ∀𝑥 ∈ (0...𝐾)∀𝑦 ∈ (0...𝐾)((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))))
5857ex 450 . . . . . . . . . . . 12 (𝐹:(0...𝐾)⟶𝑉 → (𝐾 ∈ ℕ0 → ((𝐹‘0) ≠ (𝐹𝐾) → ((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉 → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ∀𝑥 ∈ (0...𝐾)∀𝑦 ∈ (0...𝐾)((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))))
5958com24 95 . . . . . . . . . . 11 (𝐹:(0...𝐾)⟶𝑉 → ((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉 → ((𝐹‘0) ≠ (𝐹𝐾) → (𝐾 ∈ ℕ0 → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ∀𝑥 ∈ (0...𝐾)∀𝑦 ∈ (0...𝐾)((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))))))
6059impcom 446 . . . . . . . . . 10 (((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉𝐹:(0...𝐾)⟶𝑉) → ((𝐹‘0) ≠ (𝐹𝐾) → (𝐾 ∈ ℕ0 → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → ∀𝑥 ∈ (0...𝐾)∀𝑦 ∈ (0...𝐾)((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))))
6160imp41 619 . . . . . . . . 9 ((((((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉𝐹:(0...𝐾)⟶𝑉) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ 𝐾 ∈ ℕ0) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) → ∀𝑥 ∈ (0...𝐾)∀𝑦 ∈ (0...𝐾)((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
62 dff13 6512 . . . . . . . . 9 (𝐹:(0...𝐾)–1-1𝑉 ↔ (𝐹:(0...𝐾)⟶𝑉 ∧ ∀𝑥 ∈ (0...𝐾)∀𝑦 ∈ (0...𝐾)((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
6311, 61, 62sylanbrc 698 . . . . . . . 8 ((((((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉𝐹:(0...𝐾)⟶𝑉) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ 𝐾 ∈ ℕ0) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) → 𝐹:(0...𝐾)–1-1𝑉)
6411biantrurd 529 . . . . . . . . 9 ((((((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉𝐹:(0...𝐾)⟶𝑉) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ 𝐾 ∈ ℕ0) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) → (Fun 𝐹 ↔ (𝐹:(0...𝐾)⟶𝑉 ∧ Fun 𝐹)))
65 df-f1 5893 . . . . . . . . 9 (𝐹:(0...𝐾)–1-1𝑉 ↔ (𝐹:(0...𝐾)⟶𝑉 ∧ Fun 𝐹))
6664, 65syl6bbr 278 . . . . . . . 8 ((((((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉𝐹:(0...𝐾)⟶𝑉) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ 𝐾 ∈ ℕ0) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) → (Fun 𝐹𝐹:(0...𝐾)–1-1𝑉))
6763, 66mpbird 247 . . . . . . 7 ((((((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉𝐹:(0...𝐾)⟶𝑉) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ 𝐾 ∈ ℕ0) ∧ ((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅) → Fun 𝐹)
6867ex 450 . . . . . 6 (((((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉𝐹:(0...𝐾)⟶𝑉) ∧ (𝐹‘0) ≠ (𝐹𝐾)) ∧ 𝐾 ∈ ℕ0) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → Fun 𝐹))
6968exp41 638 . . . . 5 ((𝐹 ↾ (1..^𝐾)):(1..^𝐾)–1-1𝑉 → (𝐹:(0...𝐾)⟶𝑉 → ((𝐹‘0) ≠ (𝐹𝐾) → (𝐾 ∈ ℕ0 → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → Fun 𝐹)))))
7010, 69syl6bi 243 . . . 4 (𝐹:(0...𝐾)⟶𝑉 → (Fun (𝐹 ↾ (1..^𝐾)) → (𝐹:(0...𝐾)⟶𝑉 → ((𝐹‘0) ≠ (𝐹𝐾) → (𝐾 ∈ ℕ0 → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → Fun 𝐹))))))
7170pm2.43a 54 . . 3 (𝐹:(0...𝐾)⟶𝑉 → (Fun (𝐹 ↾ (1..^𝐾)) → ((𝐹‘0) ≠ (𝐹𝐾) → (𝐾 ∈ ℕ0 → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → Fun 𝐹)))))
72713imp 1256 . 2 ((𝐹:(0...𝐾)⟶𝑉 ∧ Fun (𝐹 ↾ (1..^𝐾)) ∧ (𝐹‘0) ≠ (𝐹𝐾)) → (𝐾 ∈ ℕ0 → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → Fun 𝐹)))
7372com12 32 1 (𝐾 ∈ ℕ0 → ((𝐹:(0...𝐾)⟶𝑉 ∧ Fun (𝐹 ↾ (1..^𝐾)) ∧ (𝐹‘0) ≠ (𝐹𝐾)) → (((𝐹 “ {0, 𝐾}) ∩ (𝐹 “ (1..^𝐾))) = ∅ → Fun 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  cin 3573  wss 3574  c0 3915  {cpr 4179  ccnv 5113  cres 5116  cima 5117  Fun wfun 5882  wf 5884  1-1wf1 5885  cfv 5888  (class class class)co 6650  0cc0 9936  1c1 9937  0cn0 11292  ...cfz 12326  ..^cfzo 12465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466
This theorem is referenced by:  pthdepisspth  26631
  Copyright terms: Public domain W3C validator