MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgint Structured version   Visualization version   GIF version

Theorem subrgint 18802
Description: The intersection of a nonempty collection of subrings is a subring. (Contributed by Stefan O'Rear, 30-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.)
Assertion
Ref Expression
subrgint ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (SubRing‘𝑅))

Proof of Theorem subrgint
Dummy variables 𝑥 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgsubg 18786 . . . . 5 (𝑟 ∈ (SubRing‘𝑅) → 𝑟 ∈ (SubGrp‘𝑅))
21ssriv 3607 . . . 4 (SubRing‘𝑅) ⊆ (SubGrp‘𝑅)
3 sstr 3611 . . . 4 ((𝑆 ⊆ (SubRing‘𝑅) ∧ (SubRing‘𝑅) ⊆ (SubGrp‘𝑅)) → 𝑆 ⊆ (SubGrp‘𝑅))
42, 3mpan2 707 . . 3 (𝑆 ⊆ (SubRing‘𝑅) → 𝑆 ⊆ (SubGrp‘𝑅))
5 subgint 17618 . . 3 ((𝑆 ⊆ (SubGrp‘𝑅) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (SubGrp‘𝑅))
64, 5sylan 488 . 2 ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (SubGrp‘𝑅))
7 ssel2 3598 . . . . . 6 ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑟𝑆) → 𝑟 ∈ (SubRing‘𝑅))
87adantlr 751 . . . . 5 (((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ 𝑟𝑆) → 𝑟 ∈ (SubRing‘𝑅))
9 eqid 2622 . . . . . 6 (1r𝑅) = (1r𝑅)
109subrg1cl 18788 . . . . 5 (𝑟 ∈ (SubRing‘𝑅) → (1r𝑅) ∈ 𝑟)
118, 10syl 17 . . . 4 (((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ 𝑟𝑆) → (1r𝑅) ∈ 𝑟)
1211ralrimiva 2966 . . 3 ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) → ∀𝑟𝑆 (1r𝑅) ∈ 𝑟)
13 fvex 6201 . . . 4 (1r𝑅) ∈ V
1413elint2 4482 . . 3 ((1r𝑅) ∈ 𝑆 ↔ ∀𝑟𝑆 (1r𝑅) ∈ 𝑟)
1512, 14sylibr 224 . 2 ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) → (1r𝑅) ∈ 𝑆)
168adantlr 751 . . . . . 6 ((((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → 𝑟 ∈ (SubRing‘𝑅))
17 simprl 794 . . . . . . 7 (((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) → 𝑥 𝑆)
18 elinti 4485 . . . . . . . 8 (𝑥 𝑆 → (𝑟𝑆𝑥𝑟))
1918imp 445 . . . . . . 7 ((𝑥 𝑆𝑟𝑆) → 𝑥𝑟)
2017, 19sylan 488 . . . . . 6 ((((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → 𝑥𝑟)
21 simprr 796 . . . . . . 7 (((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) → 𝑦 𝑆)
22 elinti 4485 . . . . . . . 8 (𝑦 𝑆 → (𝑟𝑆𝑦𝑟))
2322imp 445 . . . . . . 7 ((𝑦 𝑆𝑟𝑆) → 𝑦𝑟)
2421, 23sylan 488 . . . . . 6 ((((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → 𝑦𝑟)
25 eqid 2622 . . . . . . 7 (.r𝑅) = (.r𝑅)
2625subrgmcl 18792 . . . . . 6 ((𝑟 ∈ (SubRing‘𝑅) ∧ 𝑥𝑟𝑦𝑟) → (𝑥(.r𝑅)𝑦) ∈ 𝑟)
2716, 20, 24, 26syl3anc 1326 . . . . 5 ((((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) ∧ 𝑟𝑆) → (𝑥(.r𝑅)𝑦) ∈ 𝑟)
2827ralrimiva 2966 . . . 4 (((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) → ∀𝑟𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑟)
29 ovex 6678 . . . . 5 (𝑥(.r𝑅)𝑦) ∈ V
3029elint2 4482 . . . 4 ((𝑥(.r𝑅)𝑦) ∈ 𝑆 ↔ ∀𝑟𝑆 (𝑥(.r𝑅)𝑦) ∈ 𝑟)
3128, 30sylibr 224 . . 3 (((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) ∧ (𝑥 𝑆𝑦 𝑆)) → (𝑥(.r𝑅)𝑦) ∈ 𝑆)
3231ralrimivva 2971 . 2 ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) → ∀𝑥 𝑆𝑦 𝑆(𝑥(.r𝑅)𝑦) ∈ 𝑆)
33 ssn0 3976 . . 3 ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) → (SubRing‘𝑅) ≠ ∅)
34 n0 3931 . . . 4 ((SubRing‘𝑅) ≠ ∅ ↔ ∃𝑟 𝑟 ∈ (SubRing‘𝑅))
35 subrgrcl 18785 . . . . 5 (𝑟 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
3635exlimiv 1858 . . . 4 (∃𝑟 𝑟 ∈ (SubRing‘𝑅) → 𝑅 ∈ Ring)
3734, 36sylbi 207 . . 3 ((SubRing‘𝑅) ≠ ∅ → 𝑅 ∈ Ring)
38 eqid 2622 . . . 4 (Base‘𝑅) = (Base‘𝑅)
3938, 9, 25issubrg2 18800 . . 3 (𝑅 ∈ Ring → ( 𝑆 ∈ (SubRing‘𝑅) ↔ ( 𝑆 ∈ (SubGrp‘𝑅) ∧ (1r𝑅) ∈ 𝑆 ∧ ∀𝑥 𝑆𝑦 𝑆(𝑥(.r𝑅)𝑦) ∈ 𝑆)))
4033, 37, 393syl 18 . 2 ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) → ( 𝑆 ∈ (SubRing‘𝑅) ↔ ( 𝑆 ∈ (SubGrp‘𝑅) ∧ (1r𝑅) ∈ 𝑆 ∧ ∀𝑥 𝑆𝑦 𝑆(𝑥(.r𝑅)𝑦) ∈ 𝑆)))
416, 15, 32, 40mpbir3and 1245 1 ((𝑆 ⊆ (SubRing‘𝑅) ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (SubRing‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037  wex 1704  wcel 1990  wne 2794  wral 2912  wss 3574  c0 3915   cint 4475  cfv 5888  (class class class)co 6650  Basecbs 15857  .rcmulr 15942  SubGrpcsubg 17588  1rcur 18501  Ringcrg 18547  SubRingcsubrg 18776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-subg 17591  df-mgp 18490  df-ur 18502  df-ring 18549  df-subrg 18778
This theorem is referenced by:  subrgin  18803  subrgmre  18804  aspsubrg  19331  rgspncl  37739
  Copyright terms: Public domain W3C validator