| Step | Hyp | Ref
| Expression |
| 1 | | vex 3203 |
. . . . . . 7
⊢ 𝑤 ∈ V |
| 2 | | oveq1 6657 |
. . . . . . . . . 10
⊢ (𝑣 = 𝑎 → (𝑣 + 𝐵) = (𝑎 + 𝐵)) |
| 3 | 2 | eqeq2d 2632 |
. . . . . . . . 9
⊢ (𝑣 = 𝑎 → (𝑧 = (𝑣 + 𝐵) ↔ 𝑧 = (𝑎 + 𝐵))) |
| 4 | 3 | cbvrexv 3172 |
. . . . . . . 8
⊢
(∃𝑣 ∈
𝐴 𝑧 = (𝑣 + 𝐵) ↔ ∃𝑎 ∈ 𝐴 𝑧 = (𝑎 + 𝐵)) |
| 5 | | eqeq1 2626 |
. . . . . . . . 9
⊢ (𝑧 = 𝑤 → (𝑧 = (𝑎 + 𝐵) ↔ 𝑤 = (𝑎 + 𝐵))) |
| 6 | 5 | rexbidv 3052 |
. . . . . . . 8
⊢ (𝑧 = 𝑤 → (∃𝑎 ∈ 𝐴 𝑧 = (𝑎 + 𝐵) ↔ ∃𝑎 ∈ 𝐴 𝑤 = (𝑎 + 𝐵))) |
| 7 | 4, 6 | syl5bb 272 |
. . . . . . 7
⊢ (𝑧 = 𝑤 → (∃𝑣 ∈ 𝐴 𝑧 = (𝑣 + 𝐵) ↔ ∃𝑎 ∈ 𝐴 𝑤 = (𝑎 + 𝐵))) |
| 8 | | supaddc.c |
. . . . . . 7
⊢ 𝐶 = {𝑧 ∣ ∃𝑣 ∈ 𝐴 𝑧 = (𝑣 + 𝐵)} |
| 9 | 1, 7, 8 | elab2 3354 |
. . . . . 6
⊢ (𝑤 ∈ 𝐶 ↔ ∃𝑎 ∈ 𝐴 𝑤 = (𝑎 + 𝐵)) |
| 10 | | supadd.a1 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| 11 | 10 | sselda 3603 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ ℝ) |
| 12 | | supadd.a2 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ≠ ∅) |
| 13 | | supadd.a3 |
. . . . . . . . . . 11
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
| 14 | | suprcl 10983 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → sup(𝐴, ℝ, < ) ∈
ℝ) |
| 15 | 10, 12, 13, 14 | syl3anc 1326 |
. . . . . . . . . 10
⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈
ℝ) |
| 16 | 15 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → sup(𝐴, ℝ, < ) ∈
ℝ) |
| 17 | | supaddc.b |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 18 | 17 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| 19 | 10, 12, 13 | 3jca 1242 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) |
| 20 | | suprub 10984 |
. . . . . . . . . 10
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ 𝑎 ∈ 𝐴) → 𝑎 ≤ sup(𝐴, ℝ, < )) |
| 21 | 19, 20 | sylan 488 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → 𝑎 ≤ sup(𝐴, ℝ, < )) |
| 22 | 11, 16, 18, 21 | leadd1dd 10641 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝑎 + 𝐵) ≤ (sup(𝐴, ℝ, < ) + 𝐵)) |
| 23 | | breq1 4656 |
. . . . . . . 8
⊢ (𝑤 = (𝑎 + 𝐵) → (𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵) ↔ (𝑎 + 𝐵) ≤ (sup(𝐴, ℝ, < ) + 𝐵))) |
| 24 | 22, 23 | syl5ibrcom 237 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝑤 = (𝑎 + 𝐵) → 𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵))) |
| 25 | 24 | rexlimdva 3031 |
. . . . . 6
⊢ (𝜑 → (∃𝑎 ∈ 𝐴 𝑤 = (𝑎 + 𝐵) → 𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵))) |
| 26 | 9, 25 | syl5bi 232 |
. . . . 5
⊢ (𝜑 → (𝑤 ∈ 𝐶 → 𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵))) |
| 27 | 26 | ralrimiv 2965 |
. . . 4
⊢ (𝜑 → ∀𝑤 ∈ 𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵)) |
| 28 | 11, 18 | readdcld 10069 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝑎 + 𝐵) ∈ ℝ) |
| 29 | | eleq1a 2696 |
. . . . . . . . 9
⊢ ((𝑎 + 𝐵) ∈ ℝ → (𝑤 = (𝑎 + 𝐵) → 𝑤 ∈ ℝ)) |
| 30 | 28, 29 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝑤 = (𝑎 + 𝐵) → 𝑤 ∈ ℝ)) |
| 31 | 30 | rexlimdva 3031 |
. . . . . . 7
⊢ (𝜑 → (∃𝑎 ∈ 𝐴 𝑤 = (𝑎 + 𝐵) → 𝑤 ∈ ℝ)) |
| 32 | 9, 31 | syl5bi 232 |
. . . . . 6
⊢ (𝜑 → (𝑤 ∈ 𝐶 → 𝑤 ∈ ℝ)) |
| 33 | 32 | ssrdv 3609 |
. . . . 5
⊢ (𝜑 → 𝐶 ⊆ ℝ) |
| 34 | | ovex 6678 |
. . . . . . . . 9
⊢ (𝑎 + 𝐵) ∈ V |
| 35 | 34 | isseti 3209 |
. . . . . . . 8
⊢
∃𝑤 𝑤 = (𝑎 + 𝐵) |
| 36 | 35 | rgenw 2924 |
. . . . . . 7
⊢
∀𝑎 ∈
𝐴 ∃𝑤 𝑤 = (𝑎 + 𝐵) |
| 37 | | r19.2z 4060 |
. . . . . . 7
⊢ ((𝐴 ≠ ∅ ∧
∀𝑎 ∈ 𝐴 ∃𝑤 𝑤 = (𝑎 + 𝐵)) → ∃𝑎 ∈ 𝐴 ∃𝑤 𝑤 = (𝑎 + 𝐵)) |
| 38 | 12, 36, 37 | sylancl 694 |
. . . . . 6
⊢ (𝜑 → ∃𝑎 ∈ 𝐴 ∃𝑤 𝑤 = (𝑎 + 𝐵)) |
| 39 | 9 | exbii 1774 |
. . . . . . 7
⊢
(∃𝑤 𝑤 ∈ 𝐶 ↔ ∃𝑤∃𝑎 ∈ 𝐴 𝑤 = (𝑎 + 𝐵)) |
| 40 | | n0 3931 |
. . . . . . 7
⊢ (𝐶 ≠ ∅ ↔
∃𝑤 𝑤 ∈ 𝐶) |
| 41 | | rexcom4 3225 |
. . . . . . 7
⊢
(∃𝑎 ∈
𝐴 ∃𝑤 𝑤 = (𝑎 + 𝐵) ↔ ∃𝑤∃𝑎 ∈ 𝐴 𝑤 = (𝑎 + 𝐵)) |
| 42 | 39, 40, 41 | 3bitr4i 292 |
. . . . . 6
⊢ (𝐶 ≠ ∅ ↔
∃𝑎 ∈ 𝐴 ∃𝑤 𝑤 = (𝑎 + 𝐵)) |
| 43 | 38, 42 | sylibr 224 |
. . . . 5
⊢ (𝜑 → 𝐶 ≠ ∅) |
| 44 | 15, 17 | readdcld 10069 |
. . . . . 6
⊢ (𝜑 → (sup(𝐴, ℝ, < ) + 𝐵) ∈ ℝ) |
| 45 | | breq2 4657 |
. . . . . . . 8
⊢ (𝑥 = (sup(𝐴, ℝ, < ) + 𝐵) → (𝑤 ≤ 𝑥 ↔ 𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵))) |
| 46 | 45 | ralbidv 2986 |
. . . . . . 7
⊢ (𝑥 = (sup(𝐴, ℝ, < ) + 𝐵) → (∀𝑤 ∈ 𝐶 𝑤 ≤ 𝑥 ↔ ∀𝑤 ∈ 𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵))) |
| 47 | 46 | rspcev 3309 |
. . . . . 6
⊢
(((sup(𝐴, ℝ,
< ) + 𝐵) ∈ ℝ
∧ ∀𝑤 ∈
𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵)) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝐶 𝑤 ≤ 𝑥) |
| 48 | 44, 27, 47 | syl2anc 693 |
. . . . 5
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝐶 𝑤 ≤ 𝑥) |
| 49 | | suprleub 10989 |
. . . . 5
⊢ (((𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝐶 𝑤 ≤ 𝑥) ∧ (sup(𝐴, ℝ, < ) + 𝐵) ∈ ℝ) → (sup(𝐶, ℝ, < ) ≤
(sup(𝐴, ℝ, < ) +
𝐵) ↔ ∀𝑤 ∈ 𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵))) |
| 50 | 33, 43, 48, 44, 49 | syl31anc 1329 |
. . . 4
⊢ (𝜑 → (sup(𝐶, ℝ, < ) ≤ (sup(𝐴, ℝ, < ) + 𝐵) ↔ ∀𝑤 ∈ 𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵))) |
| 51 | 27, 50 | mpbird 247 |
. . 3
⊢ (𝜑 → sup(𝐶, ℝ, < ) ≤ (sup(𝐴, ℝ, < ) + 𝐵)) |
| 52 | | suprcl 10983 |
. . . . . . . 8
⊢ ((𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝐶 𝑤 ≤ 𝑥) → sup(𝐶, ℝ, < ) ∈
ℝ) |
| 53 | 33, 43, 48, 52 | syl3anc 1326 |
. . . . . . 7
⊢ (𝜑 → sup(𝐶, ℝ, < ) ∈
ℝ) |
| 54 | 53, 17, 15 | ltsubaddd 10623 |
. . . . . 6
⊢ (𝜑 → ((sup(𝐶, ℝ, < ) − 𝐵) < sup(𝐴, ℝ, < ) ↔ sup(𝐶, ℝ, < ) <
(sup(𝐴, ℝ, < ) +
𝐵))) |
| 55 | 54 | biimpar 502 |
. . . . 5
⊢ ((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) → (sup(𝐶, ℝ, < ) − 𝐵) < sup(𝐴, ℝ, < )) |
| 56 | 53, 17 | resubcld 10458 |
. . . . . . 7
⊢ (𝜑 → (sup(𝐶, ℝ, < ) − 𝐵) ∈ ℝ) |
| 57 | | suprlub 10987 |
. . . . . . 7
⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) ∧ (sup(𝐶, ℝ, < ) − 𝐵) ∈ ℝ) → ((sup(𝐶, ℝ, < ) − 𝐵) < sup(𝐴, ℝ, < ) ↔ ∃𝑎 ∈ 𝐴 (sup(𝐶, ℝ, < ) − 𝐵) < 𝑎)) |
| 58 | 10, 12, 13, 56, 57 | syl31anc 1329 |
. . . . . 6
⊢ (𝜑 → ((sup(𝐶, ℝ, < ) − 𝐵) < sup(𝐴, ℝ, < ) ↔ ∃𝑎 ∈ 𝐴 (sup(𝐶, ℝ, < ) − 𝐵) < 𝑎)) |
| 59 | 58 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) → ((sup(𝐶, ℝ, < ) − 𝐵) < sup(𝐴, ℝ, < ) ↔ ∃𝑎 ∈ 𝐴 (sup(𝐶, ℝ, < ) − 𝐵) < 𝑎)) |
| 60 | 55, 59 | mpbid 222 |
. . . 4
⊢ ((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) → ∃𝑎 ∈ 𝐴 (sup(𝐶, ℝ, < ) − 𝐵) < 𝑎) |
| 61 | | rspe 3003 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑤 = (𝑎 + 𝐵)) → ∃𝑎 ∈ 𝐴 𝑤 = (𝑎 + 𝐵)) |
| 62 | 61, 9 | sylibr 224 |
. . . . . . . . . . . . 13
⊢ ((𝑎 ∈ 𝐴 ∧ 𝑤 = (𝑎 + 𝐵)) → 𝑤 ∈ 𝐶) |
| 63 | 62 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑤 = (𝑎 + 𝐵))) → 𝑤 ∈ 𝐶) |
| 64 | | simplrr 801 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑤 = (𝑎 + 𝐵))) ∧ 𝑤 ∈ 𝐶) → 𝑤 = (𝑎 + 𝐵)) |
| 65 | 33, 43, 48 | 3jca 1242 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝐶 𝑤 ≤ 𝑥)) |
| 66 | | suprub 10984 |
. . . . . . . . . . . . . . 15
⊢ (((𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤 ∈ 𝐶 𝑤 ≤ 𝑥) ∧ 𝑤 ∈ 𝐶) → 𝑤 ≤ sup(𝐶, ℝ, < )) |
| 67 | 65, 66 | sylan 488 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑤 ∈ 𝐶) → 𝑤 ≤ sup(𝐶, ℝ, < )) |
| 68 | 67 | adantlr 751 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑤 = (𝑎 + 𝐵))) ∧ 𝑤 ∈ 𝐶) → 𝑤 ≤ sup(𝐶, ℝ, < )) |
| 69 | 64, 68 | eqbrtrrd 4677 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑤 = (𝑎 + 𝐵))) ∧ 𝑤 ∈ 𝐶) → (𝑎 + 𝐵) ≤ sup(𝐶, ℝ, < )) |
| 70 | 63, 69 | mpdan 702 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ∈ 𝐴 ∧ 𝑤 = (𝑎 + 𝐵))) → (𝑎 + 𝐵) ≤ sup(𝐶, ℝ, < )) |
| 71 | 70 | expr 643 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝑤 = (𝑎 + 𝐵) → (𝑎 + 𝐵) ≤ sup(𝐶, ℝ, < ))) |
| 72 | 71 | exlimdv 1861 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (∃𝑤 𝑤 = (𝑎 + 𝐵) → (𝑎 + 𝐵) ≤ sup(𝐶, ℝ, < ))) |
| 73 | 35, 72 | mpi 20 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → (𝑎 + 𝐵) ≤ sup(𝐶, ℝ, < )) |
| 74 | 73 | adantlr 751 |
. . . . . . 7
⊢ (((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) ∧ 𝑎 ∈ 𝐴) → (𝑎 + 𝐵) ≤ sup(𝐶, ℝ, < )) |
| 75 | 28 | adantlr 751 |
. . . . . . . 8
⊢ (((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) ∧ 𝑎 ∈ 𝐴) → (𝑎 + 𝐵) ∈ ℝ) |
| 76 | 53 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) ∧ 𝑎 ∈ 𝐴) → sup(𝐶, ℝ, < ) ∈
ℝ) |
| 77 | 75, 76 | lenltd 10183 |
. . . . . . 7
⊢ (((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) ∧ 𝑎 ∈ 𝐴) → ((𝑎 + 𝐵) ≤ sup(𝐶, ℝ, < ) ↔ ¬ sup(𝐶, ℝ, < ) < (𝑎 + 𝐵))) |
| 78 | 74, 77 | mpbid 222 |
. . . . . 6
⊢ (((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) ∧ 𝑎 ∈ 𝐴) → ¬ sup(𝐶, ℝ, < ) < (𝑎 + 𝐵)) |
| 79 | 17 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) ∧ 𝑎 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| 80 | 11 | adantlr 751 |
. . . . . . 7
⊢ (((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ ℝ) |
| 81 | 76, 79, 80 | ltsubaddd 10623 |
. . . . . 6
⊢ (((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) ∧ 𝑎 ∈ 𝐴) → ((sup(𝐶, ℝ, < ) − 𝐵) < 𝑎 ↔ sup(𝐶, ℝ, < ) < (𝑎 + 𝐵))) |
| 82 | 78, 81 | mtbird 315 |
. . . . 5
⊢ (((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) ∧ 𝑎 ∈ 𝐴) → ¬ (sup(𝐶, ℝ, < ) − 𝐵) < 𝑎) |
| 83 | 82 | nrexdv 3001 |
. . . 4
⊢ ((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) → ¬ ∃𝑎 ∈ 𝐴 (sup(𝐶, ℝ, < ) − 𝐵) < 𝑎) |
| 84 | 60, 83 | pm2.65da 600 |
. . 3
⊢ (𝜑 → ¬ sup(𝐶, ℝ, < ) <
(sup(𝐴, ℝ, < ) +
𝐵)) |
| 85 | 53, 44 | eqleltd 10181 |
. . 3
⊢ (𝜑 → (sup(𝐶, ℝ, < ) = (sup(𝐴, ℝ, < ) + 𝐵) ↔ (sup(𝐶, ℝ, < ) ≤ (sup(𝐴, ℝ, < ) + 𝐵) ∧ ¬ sup(𝐶, ℝ, < ) <
(sup(𝐴, ℝ, < ) +
𝐵)))) |
| 86 | 51, 84, 85 | mpbir2and 957 |
. 2
⊢ (𝜑 → sup(𝐶, ℝ, < ) = (sup(𝐴, ℝ, < ) + 𝐵)) |
| 87 | 86 | eqcomd 2628 |
1
⊢ (𝜑 → (sup(𝐴, ℝ, < ) + 𝐵) = sup(𝐶, ℝ, < )) |