MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supaddc Structured version   Visualization version   GIF version

Theorem supaddc 10990
Description: The supremum function distributes over addition in a sense similar to that in supmul1 10992. (Contributed by Brendan Leahy, 25-Sep-2017.)
Hypotheses
Ref Expression
supadd.a1 (𝜑𝐴 ⊆ ℝ)
supadd.a2 (𝜑𝐴 ≠ ∅)
supadd.a3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
supaddc.b (𝜑𝐵 ∈ ℝ)
supaddc.c 𝐶 = {𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣 + 𝐵)}
Assertion
Ref Expression
supaddc (𝜑 → (sup(𝐴, ℝ, < ) + 𝐵) = sup(𝐶, ℝ, < ))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑣,𝐴   𝑥,𝐵,𝑦,𝑧,𝑣   𝑥,𝐶   𝜑,𝑧,𝑣
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐶(𝑦,𝑧,𝑣)

Proof of Theorem supaddc
Dummy variables 𝑤 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3203 . . . . . . 7 𝑤 ∈ V
2 oveq1 6657 . . . . . . . . . 10 (𝑣 = 𝑎 → (𝑣 + 𝐵) = (𝑎 + 𝐵))
32eqeq2d 2632 . . . . . . . . 9 (𝑣 = 𝑎 → (𝑧 = (𝑣 + 𝐵) ↔ 𝑧 = (𝑎 + 𝐵)))
43cbvrexv 3172 . . . . . . . 8 (∃𝑣𝐴 𝑧 = (𝑣 + 𝐵) ↔ ∃𝑎𝐴 𝑧 = (𝑎 + 𝐵))
5 eqeq1 2626 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧 = (𝑎 + 𝐵) ↔ 𝑤 = (𝑎 + 𝐵)))
65rexbidv 3052 . . . . . . . 8 (𝑧 = 𝑤 → (∃𝑎𝐴 𝑧 = (𝑎 + 𝐵) ↔ ∃𝑎𝐴 𝑤 = (𝑎 + 𝐵)))
74, 6syl5bb 272 . . . . . . 7 (𝑧 = 𝑤 → (∃𝑣𝐴 𝑧 = (𝑣 + 𝐵) ↔ ∃𝑎𝐴 𝑤 = (𝑎 + 𝐵)))
8 supaddc.c . . . . . . 7 𝐶 = {𝑧 ∣ ∃𝑣𝐴 𝑧 = (𝑣 + 𝐵)}
91, 7, 8elab2 3354 . . . . . 6 (𝑤𝐶 ↔ ∃𝑎𝐴 𝑤 = (𝑎 + 𝐵))
10 supadd.a1 . . . . . . . . . 10 (𝜑𝐴 ⊆ ℝ)
1110sselda 3603 . . . . . . . . 9 ((𝜑𝑎𝐴) → 𝑎 ∈ ℝ)
12 supadd.a2 . . . . . . . . . . 11 (𝜑𝐴 ≠ ∅)
13 supadd.a3 . . . . . . . . . . 11 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
14 suprcl 10983 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ∈ ℝ)
1510, 12, 13, 14syl3anc 1326 . . . . . . . . . 10 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ)
1615adantr 481 . . . . . . . . 9 ((𝜑𝑎𝐴) → sup(𝐴, ℝ, < ) ∈ ℝ)
17 supaddc.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
1817adantr 481 . . . . . . . . 9 ((𝜑𝑎𝐴) → 𝐵 ∈ ℝ)
1910, 12, 133jca 1242 . . . . . . . . . 10 (𝜑 → (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥))
20 suprub 10984 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ 𝑎𝐴) → 𝑎 ≤ sup(𝐴, ℝ, < ))
2119, 20sylan 488 . . . . . . . . 9 ((𝜑𝑎𝐴) → 𝑎 ≤ sup(𝐴, ℝ, < ))
2211, 16, 18, 21leadd1dd 10641 . . . . . . . 8 ((𝜑𝑎𝐴) → (𝑎 + 𝐵) ≤ (sup(𝐴, ℝ, < ) + 𝐵))
23 breq1 4656 . . . . . . . 8 (𝑤 = (𝑎 + 𝐵) → (𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵) ↔ (𝑎 + 𝐵) ≤ (sup(𝐴, ℝ, < ) + 𝐵)))
2422, 23syl5ibrcom 237 . . . . . . 7 ((𝜑𝑎𝐴) → (𝑤 = (𝑎 + 𝐵) → 𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵)))
2524rexlimdva 3031 . . . . . 6 (𝜑 → (∃𝑎𝐴 𝑤 = (𝑎 + 𝐵) → 𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵)))
269, 25syl5bi 232 . . . . 5 (𝜑 → (𝑤𝐶𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵)))
2726ralrimiv 2965 . . . 4 (𝜑 → ∀𝑤𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵))
2811, 18readdcld 10069 . . . . . . . . 9 ((𝜑𝑎𝐴) → (𝑎 + 𝐵) ∈ ℝ)
29 eleq1a 2696 . . . . . . . . 9 ((𝑎 + 𝐵) ∈ ℝ → (𝑤 = (𝑎 + 𝐵) → 𝑤 ∈ ℝ))
3028, 29syl 17 . . . . . . . 8 ((𝜑𝑎𝐴) → (𝑤 = (𝑎 + 𝐵) → 𝑤 ∈ ℝ))
3130rexlimdva 3031 . . . . . . 7 (𝜑 → (∃𝑎𝐴 𝑤 = (𝑎 + 𝐵) → 𝑤 ∈ ℝ))
329, 31syl5bi 232 . . . . . 6 (𝜑 → (𝑤𝐶𝑤 ∈ ℝ))
3332ssrdv 3609 . . . . 5 (𝜑𝐶 ⊆ ℝ)
34 ovex 6678 . . . . . . . . 9 (𝑎 + 𝐵) ∈ V
3534isseti 3209 . . . . . . . 8 𝑤 𝑤 = (𝑎 + 𝐵)
3635rgenw 2924 . . . . . . 7 𝑎𝐴𝑤 𝑤 = (𝑎 + 𝐵)
37 r19.2z 4060 . . . . . . 7 ((𝐴 ≠ ∅ ∧ ∀𝑎𝐴𝑤 𝑤 = (𝑎 + 𝐵)) → ∃𝑎𝐴𝑤 𝑤 = (𝑎 + 𝐵))
3812, 36, 37sylancl 694 . . . . . 6 (𝜑 → ∃𝑎𝐴𝑤 𝑤 = (𝑎 + 𝐵))
399exbii 1774 . . . . . . 7 (∃𝑤 𝑤𝐶 ↔ ∃𝑤𝑎𝐴 𝑤 = (𝑎 + 𝐵))
40 n0 3931 . . . . . . 7 (𝐶 ≠ ∅ ↔ ∃𝑤 𝑤𝐶)
41 rexcom4 3225 . . . . . . 7 (∃𝑎𝐴𝑤 𝑤 = (𝑎 + 𝐵) ↔ ∃𝑤𝑎𝐴 𝑤 = (𝑎 + 𝐵))
4239, 40, 413bitr4i 292 . . . . . 6 (𝐶 ≠ ∅ ↔ ∃𝑎𝐴𝑤 𝑤 = (𝑎 + 𝐵))
4338, 42sylibr 224 . . . . 5 (𝜑𝐶 ≠ ∅)
4415, 17readdcld 10069 . . . . . 6 (𝜑 → (sup(𝐴, ℝ, < ) + 𝐵) ∈ ℝ)
45 breq2 4657 . . . . . . . 8 (𝑥 = (sup(𝐴, ℝ, < ) + 𝐵) → (𝑤𝑥𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵)))
4645ralbidv 2986 . . . . . . 7 (𝑥 = (sup(𝐴, ℝ, < ) + 𝐵) → (∀𝑤𝐶 𝑤𝑥 ↔ ∀𝑤𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵)))
4746rspcev 3309 . . . . . 6 (((sup(𝐴, ℝ, < ) + 𝐵) ∈ ℝ ∧ ∀𝑤𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵)) → ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥)
4844, 27, 47syl2anc 693 . . . . 5 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥)
49 suprleub 10989 . . . . 5 (((𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥) ∧ (sup(𝐴, ℝ, < ) + 𝐵) ∈ ℝ) → (sup(𝐶, ℝ, < ) ≤ (sup(𝐴, ℝ, < ) + 𝐵) ↔ ∀𝑤𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵)))
5033, 43, 48, 44, 49syl31anc 1329 . . . 4 (𝜑 → (sup(𝐶, ℝ, < ) ≤ (sup(𝐴, ℝ, < ) + 𝐵) ↔ ∀𝑤𝐶 𝑤 ≤ (sup(𝐴, ℝ, < ) + 𝐵)))
5127, 50mpbird 247 . . 3 (𝜑 → sup(𝐶, ℝ, < ) ≤ (sup(𝐴, ℝ, < ) + 𝐵))
52 suprcl 10983 . . . . . . . 8 ((𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥) → sup(𝐶, ℝ, < ) ∈ ℝ)
5333, 43, 48, 52syl3anc 1326 . . . . . . 7 (𝜑 → sup(𝐶, ℝ, < ) ∈ ℝ)
5453, 17, 15ltsubaddd 10623 . . . . . 6 (𝜑 → ((sup(𝐶, ℝ, < ) − 𝐵) < sup(𝐴, ℝ, < ) ↔ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)))
5554biimpar 502 . . . . 5 ((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) → (sup(𝐶, ℝ, < ) − 𝐵) < sup(𝐴, ℝ, < ))
5653, 17resubcld 10458 . . . . . . 7 (𝜑 → (sup(𝐶, ℝ, < ) − 𝐵) ∈ ℝ)
57 suprlub 10987 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) ∧ (sup(𝐶, ℝ, < ) − 𝐵) ∈ ℝ) → ((sup(𝐶, ℝ, < ) − 𝐵) < sup(𝐴, ℝ, < ) ↔ ∃𝑎𝐴 (sup(𝐶, ℝ, < ) − 𝐵) < 𝑎))
5810, 12, 13, 56, 57syl31anc 1329 . . . . . 6 (𝜑 → ((sup(𝐶, ℝ, < ) − 𝐵) < sup(𝐴, ℝ, < ) ↔ ∃𝑎𝐴 (sup(𝐶, ℝ, < ) − 𝐵) < 𝑎))
5958adantr 481 . . . . 5 ((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) → ((sup(𝐶, ℝ, < ) − 𝐵) < sup(𝐴, ℝ, < ) ↔ ∃𝑎𝐴 (sup(𝐶, ℝ, < ) − 𝐵) < 𝑎))
6055, 59mpbid 222 . . . 4 ((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) → ∃𝑎𝐴 (sup(𝐶, ℝ, < ) − 𝐵) < 𝑎)
61 rspe 3003 . . . . . . . . . . . . . 14 ((𝑎𝐴𝑤 = (𝑎 + 𝐵)) → ∃𝑎𝐴 𝑤 = (𝑎 + 𝐵))
6261, 9sylibr 224 . . . . . . . . . . . . 13 ((𝑎𝐴𝑤 = (𝑎 + 𝐵)) → 𝑤𝐶)
6362adantl 482 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐴𝑤 = (𝑎 + 𝐵))) → 𝑤𝐶)
64 simplrr 801 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎𝐴𝑤 = (𝑎 + 𝐵))) ∧ 𝑤𝐶) → 𝑤 = (𝑎 + 𝐵))
6533, 43, 483jca 1242 . . . . . . . . . . . . . . 15 (𝜑 → (𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥))
66 suprub 10984 . . . . . . . . . . . . . . 15 (((𝐶 ⊆ ℝ ∧ 𝐶 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑤𝐶 𝑤𝑥) ∧ 𝑤𝐶) → 𝑤 ≤ sup(𝐶, ℝ, < ))
6765, 66sylan 488 . . . . . . . . . . . . . 14 ((𝜑𝑤𝐶) → 𝑤 ≤ sup(𝐶, ℝ, < ))
6867adantlr 751 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎𝐴𝑤 = (𝑎 + 𝐵))) ∧ 𝑤𝐶) → 𝑤 ≤ sup(𝐶, ℝ, < ))
6964, 68eqbrtrrd 4677 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎𝐴𝑤 = (𝑎 + 𝐵))) ∧ 𝑤𝐶) → (𝑎 + 𝐵) ≤ sup(𝐶, ℝ, < ))
7063, 69mpdan 702 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐴𝑤 = (𝑎 + 𝐵))) → (𝑎 + 𝐵) ≤ sup(𝐶, ℝ, < ))
7170expr 643 . . . . . . . . . 10 ((𝜑𝑎𝐴) → (𝑤 = (𝑎 + 𝐵) → (𝑎 + 𝐵) ≤ sup(𝐶, ℝ, < )))
7271exlimdv 1861 . . . . . . . . 9 ((𝜑𝑎𝐴) → (∃𝑤 𝑤 = (𝑎 + 𝐵) → (𝑎 + 𝐵) ≤ sup(𝐶, ℝ, < )))
7335, 72mpi 20 . . . . . . . 8 ((𝜑𝑎𝐴) → (𝑎 + 𝐵) ≤ sup(𝐶, ℝ, < ))
7473adantlr 751 . . . . . . 7 (((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) ∧ 𝑎𝐴) → (𝑎 + 𝐵) ≤ sup(𝐶, ℝ, < ))
7528adantlr 751 . . . . . . . 8 (((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) ∧ 𝑎𝐴) → (𝑎 + 𝐵) ∈ ℝ)
7653ad2antrr 762 . . . . . . . 8 (((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) ∧ 𝑎𝐴) → sup(𝐶, ℝ, < ) ∈ ℝ)
7775, 76lenltd 10183 . . . . . . 7 (((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) ∧ 𝑎𝐴) → ((𝑎 + 𝐵) ≤ sup(𝐶, ℝ, < ) ↔ ¬ sup(𝐶, ℝ, < ) < (𝑎 + 𝐵)))
7874, 77mpbid 222 . . . . . 6 (((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) ∧ 𝑎𝐴) → ¬ sup(𝐶, ℝ, < ) < (𝑎 + 𝐵))
7917ad2antrr 762 . . . . . . 7 (((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) ∧ 𝑎𝐴) → 𝐵 ∈ ℝ)
8011adantlr 751 . . . . . . 7 (((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) ∧ 𝑎𝐴) → 𝑎 ∈ ℝ)
8176, 79, 80ltsubaddd 10623 . . . . . 6 (((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) ∧ 𝑎𝐴) → ((sup(𝐶, ℝ, < ) − 𝐵) < 𝑎 ↔ sup(𝐶, ℝ, < ) < (𝑎 + 𝐵)))
8278, 81mtbird 315 . . . . 5 (((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) ∧ 𝑎𝐴) → ¬ (sup(𝐶, ℝ, < ) − 𝐵) < 𝑎)
8382nrexdv 3001 . . . 4 ((𝜑 ∧ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵)) → ¬ ∃𝑎𝐴 (sup(𝐶, ℝ, < ) − 𝐵) < 𝑎)
8460, 83pm2.65da 600 . . 3 (𝜑 → ¬ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵))
8553, 44eqleltd 10181 . . 3 (𝜑 → (sup(𝐶, ℝ, < ) = (sup(𝐴, ℝ, < ) + 𝐵) ↔ (sup(𝐶, ℝ, < ) ≤ (sup(𝐴, ℝ, < ) + 𝐵) ∧ ¬ sup(𝐶, ℝ, < ) < (sup(𝐴, ℝ, < ) + 𝐵))))
8651, 84, 85mpbir2and 957 . 2 (𝜑 → sup(𝐶, ℝ, < ) = (sup(𝐴, ℝ, < ) + 𝐵))
8786eqcomd 2628 1 (𝜑 → (sup(𝐴, ℝ, < ) + 𝐵) = sup(𝐶, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  {cab 2608  wne 2794  wral 2912  wrex 2913  wss 3574  c0 3915   class class class wbr 4653  (class class class)co 6650  supcsup 8346  cr 9935   + caddc 9939   < clt 10074  cle 10075  cmin 10266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269
This theorem is referenced by:  supadd  10991  supsubc  39569
  Copyright terms: Public domain W3C validator