![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > supsubc | Structured version Visualization version GIF version |
Description: The supremum function distributes over subtraction in a sense similar to that in supaddc 10990. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
Ref | Expression |
---|---|
supsubc.a1 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
supsubc.a2 | ⊢ (𝜑 → 𝐴 ≠ ∅) |
supsubc.a3 | ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
supsubc.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
supsubc.c | ⊢ 𝐶 = {𝑧 ∣ ∃𝑣 ∈ 𝐴 𝑧 = (𝑣 − 𝐵)} |
Ref | Expression |
---|---|
supsubc | ⊢ (𝜑 → (sup(𝐴, ℝ, < ) − 𝐵) = sup(𝐶, ℝ, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supsubc.c | . . . . 5 ⊢ 𝐶 = {𝑧 ∣ ∃𝑣 ∈ 𝐴 𝑧 = (𝑣 − 𝐵)} | |
2 | 1 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐶 = {𝑧 ∣ ∃𝑣 ∈ 𝐴 𝑧 = (𝑣 − 𝐵)}) |
3 | supsubc.a1 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
4 | 3 | sselda 3603 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → 𝑣 ∈ ℝ) |
5 | 4 | recnd 10068 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → 𝑣 ∈ ℂ) |
6 | supsubc.b | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
7 | 6 | recnd 10068 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
8 | 7 | adantr 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → 𝐵 ∈ ℂ) |
9 | 5, 8 | negsubd 10398 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → (𝑣 + -𝐵) = (𝑣 − 𝐵)) |
10 | 9 | eqcomd 2628 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → (𝑣 − 𝐵) = (𝑣 + -𝐵)) |
11 | 10 | eqeq2d 2632 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → (𝑧 = (𝑣 − 𝐵) ↔ 𝑧 = (𝑣 + -𝐵))) |
12 | 11 | rexbidva 3049 | . . . . 5 ⊢ (𝜑 → (∃𝑣 ∈ 𝐴 𝑧 = (𝑣 − 𝐵) ↔ ∃𝑣 ∈ 𝐴 𝑧 = (𝑣 + -𝐵))) |
13 | 12 | abbidv 2741 | . . . 4 ⊢ (𝜑 → {𝑧 ∣ ∃𝑣 ∈ 𝐴 𝑧 = (𝑣 − 𝐵)} = {𝑧 ∣ ∃𝑣 ∈ 𝐴 𝑧 = (𝑣 + -𝐵)}) |
14 | eqidd 2623 | . . . 4 ⊢ (𝜑 → {𝑧 ∣ ∃𝑣 ∈ 𝐴 𝑧 = (𝑣 + -𝐵)} = {𝑧 ∣ ∃𝑣 ∈ 𝐴 𝑧 = (𝑣 + -𝐵)}) | |
15 | 2, 13, 14 | 3eqtrd 2660 | . . 3 ⊢ (𝜑 → 𝐶 = {𝑧 ∣ ∃𝑣 ∈ 𝐴 𝑧 = (𝑣 + -𝐵)}) |
16 | 15 | supeq1d 8352 | . 2 ⊢ (𝜑 → sup(𝐶, ℝ, < ) = sup({𝑧 ∣ ∃𝑣 ∈ 𝐴 𝑧 = (𝑣 + -𝐵)}, ℝ, < )) |
17 | supsubc.a2 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
18 | supsubc.a3 | . . . 4 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | |
19 | 6 | renegcld 10457 | . . . 4 ⊢ (𝜑 → -𝐵 ∈ ℝ) |
20 | eqid 2622 | . . . 4 ⊢ {𝑧 ∣ ∃𝑣 ∈ 𝐴 𝑧 = (𝑣 + -𝐵)} = {𝑧 ∣ ∃𝑣 ∈ 𝐴 𝑧 = (𝑣 + -𝐵)} | |
21 | 3, 17, 18, 19, 20 | supaddc 10990 | . . 3 ⊢ (𝜑 → (sup(𝐴, ℝ, < ) + -𝐵) = sup({𝑧 ∣ ∃𝑣 ∈ 𝐴 𝑧 = (𝑣 + -𝐵)}, ℝ, < )) |
22 | 21 | eqcomd 2628 | . 2 ⊢ (𝜑 → sup({𝑧 ∣ ∃𝑣 ∈ 𝐴 𝑧 = (𝑣 + -𝐵)}, ℝ, < ) = (sup(𝐴, ℝ, < ) + -𝐵)) |
23 | suprcl 10983 | . . . . 5 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → sup(𝐴, ℝ, < ) ∈ ℝ) | |
24 | 3, 17, 18, 23 | syl3anc 1326 | . . . 4 ⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ) |
25 | 24 | recnd 10068 | . . 3 ⊢ (𝜑 → sup(𝐴, ℝ, < ) ∈ ℂ) |
26 | 25, 7 | negsubd 10398 | . 2 ⊢ (𝜑 → (sup(𝐴, ℝ, < ) + -𝐵) = (sup(𝐴, ℝ, < ) − 𝐵)) |
27 | 16, 22, 26 | 3eqtrrd 2661 | 1 ⊢ (𝜑 → (sup(𝐴, ℝ, < ) − 𝐵) = sup(𝐶, ℝ, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 {cab 2608 ≠ wne 2794 ∀wral 2912 ∃wrex 2913 ⊆ wss 3574 ∅c0 3915 class class class wbr 4653 (class class class)co 6650 supcsup 8346 ℂcc 9934 ℝcr 9935 + caddc 9939 < clt 10074 ≤ cle 10075 − cmin 10266 -cneg 10267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 |
This theorem is referenced by: hoidmvlelem1 40809 |
Copyright terms: Public domain | W3C validator |