MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supaddc Structured version   Visualization version   Unicode version

Theorem supaddc 10990
Description: The supremum function distributes over addition in a sense similar to that in supmul1 10992. (Contributed by Brendan Leahy, 25-Sep-2017.)
Hypotheses
Ref Expression
supadd.a1  |-  ( ph  ->  A  C_  RR )
supadd.a2  |-  ( ph  ->  A  =/=  (/) )
supadd.a3  |-  ( ph  ->  E. x  e.  RR  A. y  e.  A  y  <_  x )
supaddc.b  |-  ( ph  ->  B  e.  RR )
supaddc.c  |-  C  =  { z  |  E. v  e.  A  z  =  ( v  +  B ) }
Assertion
Ref Expression
supaddc  |-  ( ph  ->  ( sup ( A ,  RR ,  <  )  +  B )  =  sup ( C ,  RR ,  <  ) )
Distinct variable groups:    x, y,
z, v, A    x, B, y, z, v    x, C    ph, z, v
Allowed substitution hints:    ph( x, y)    C( y, z, v)

Proof of Theorem supaddc
Dummy variables  w  a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3203 . . . . . . 7  |-  w  e. 
_V
2 oveq1 6657 . . . . . . . . . 10  |-  ( v  =  a  ->  (
v  +  B )  =  ( a  +  B ) )
32eqeq2d 2632 . . . . . . . . 9  |-  ( v  =  a  ->  (
z  =  ( v  +  B )  <->  z  =  ( a  +  B
) ) )
43cbvrexv 3172 . . . . . . . 8  |-  ( E. v  e.  A  z  =  ( v  +  B )  <->  E. a  e.  A  z  =  ( a  +  B
) )
5 eqeq1 2626 . . . . . . . . 9  |-  ( z  =  w  ->  (
z  =  ( a  +  B )  <->  w  =  ( a  +  B
) ) )
65rexbidv 3052 . . . . . . . 8  |-  ( z  =  w  ->  ( E. a  e.  A  z  =  ( a  +  B )  <->  E. a  e.  A  w  =  ( a  +  B
) ) )
74, 6syl5bb 272 . . . . . . 7  |-  ( z  =  w  ->  ( E. v  e.  A  z  =  ( v  +  B )  <->  E. a  e.  A  w  =  ( a  +  B
) ) )
8 supaddc.c . . . . . . 7  |-  C  =  { z  |  E. v  e.  A  z  =  ( v  +  B ) }
91, 7, 8elab2 3354 . . . . . 6  |-  ( w  e.  C  <->  E. a  e.  A  w  =  ( a  +  B
) )
10 supadd.a1 . . . . . . . . . 10  |-  ( ph  ->  A  C_  RR )
1110sselda 3603 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  A )  ->  a  e.  RR )
12 supadd.a2 . . . . . . . . . . 11  |-  ( ph  ->  A  =/=  (/) )
13 supadd.a3 . . . . . . . . . . 11  |-  ( ph  ->  E. x  e.  RR  A. y  e.  A  y  <_  x )
14 suprcl 10983 . . . . . . . . . . 11  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  sup ( A ,  RR ,  <  )  e.  RR )
1510, 12, 13, 14syl3anc 1326 . . . . . . . . . 10  |-  ( ph  ->  sup ( A ,  RR ,  <  )  e.  RR )
1615adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  A )  ->  sup ( A ,  RR ,  <  )  e.  RR )
17 supaddc.b . . . . . . . . . 10  |-  ( ph  ->  B  e.  RR )
1817adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  A )  ->  B  e.  RR )
1910, 12, 133jca 1242 . . . . . . . . . 10  |-  ( ph  ->  ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x ) )
20 suprub 10984 . . . . . . . . . 10  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  a  e.  A )  ->  a  <_  sup ( A ,  RR ,  <  ) )
2119, 20sylan 488 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  A )  ->  a  <_  sup ( A ,  RR ,  <  ) )
2211, 16, 18, 21leadd1dd 10641 . . . . . . . 8  |-  ( (
ph  /\  a  e.  A )  ->  (
a  +  B )  <_  ( sup ( A ,  RR ,  <  )  +  B ) )
23 breq1 4656 . . . . . . . 8  |-  ( w  =  ( a  +  B )  ->  (
w  <_  ( sup ( A ,  RR ,  <  )  +  B )  <-> 
( a  +  B
)  <_  ( sup ( A ,  RR ,  <  )  +  B ) ) )
2422, 23syl5ibrcom 237 . . . . . . 7  |-  ( (
ph  /\  a  e.  A )  ->  (
w  =  ( a  +  B )  ->  w  <_  ( sup ( A ,  RR ,  <  )  +  B ) ) )
2524rexlimdva 3031 . . . . . 6  |-  ( ph  ->  ( E. a  e.  A  w  =  ( a  +  B )  ->  w  <_  ( sup ( A ,  RR ,  <  )  +  B
) ) )
269, 25syl5bi 232 . . . . 5  |-  ( ph  ->  ( w  e.  C  ->  w  <_  ( sup ( A ,  RR ,  <  )  +  B ) ) )
2726ralrimiv 2965 . . . 4  |-  ( ph  ->  A. w  e.  C  w  <_  ( sup ( A ,  RR ,  <  )  +  B ) )
2811, 18readdcld 10069 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  A )  ->  (
a  +  B )  e.  RR )
29 eleq1a 2696 . . . . . . . . 9  |-  ( ( a  +  B )  e.  RR  ->  (
w  =  ( a  +  B )  ->  w  e.  RR )
)
3028, 29syl 17 . . . . . . . 8  |-  ( (
ph  /\  a  e.  A )  ->  (
w  =  ( a  +  B )  ->  w  e.  RR )
)
3130rexlimdva 3031 . . . . . . 7  |-  ( ph  ->  ( E. a  e.  A  w  =  ( a  +  B )  ->  w  e.  RR ) )
329, 31syl5bi 232 . . . . . 6  |-  ( ph  ->  ( w  e.  C  ->  w  e.  RR ) )
3332ssrdv 3609 . . . . 5  |-  ( ph  ->  C  C_  RR )
34 ovex 6678 . . . . . . . . 9  |-  ( a  +  B )  e. 
_V
3534isseti 3209 . . . . . . . 8  |-  E. w  w  =  ( a  +  B )
3635rgenw 2924 . . . . . . 7  |-  A. a  e.  A  E. w  w  =  ( a  +  B )
37 r19.2z 4060 . . . . . . 7  |-  ( ( A  =/=  (/)  /\  A. a  e.  A  E. w  w  =  (
a  +  B ) )  ->  E. a  e.  A  E. w  w  =  ( a  +  B ) )
3812, 36, 37sylancl 694 . . . . . 6  |-  ( ph  ->  E. a  e.  A  E. w  w  =  ( a  +  B
) )
399exbii 1774 . . . . . . 7  |-  ( E. w  w  e.  C  <->  E. w E. a  e.  A  w  =  ( a  +  B ) )
40 n0 3931 . . . . . . 7  |-  ( C  =/=  (/)  <->  E. w  w  e.  C )
41 rexcom4 3225 . . . . . . 7  |-  ( E. a  e.  A  E. w  w  =  (
a  +  B )  <->  E. w E. a  e.  A  w  =  ( a  +  B ) )
4239, 40, 413bitr4i 292 . . . . . 6  |-  ( C  =/=  (/)  <->  E. a  e.  A  E. w  w  =  ( a  +  B
) )
4338, 42sylibr 224 . . . . 5  |-  ( ph  ->  C  =/=  (/) )
4415, 17readdcld 10069 . . . . . 6  |-  ( ph  ->  ( sup ( A ,  RR ,  <  )  +  B )  e.  RR )
45 breq2 4657 . . . . . . . 8  |-  ( x  =  ( sup ( A ,  RR ,  <  )  +  B )  ->  ( w  <_  x 
<->  w  <_  ( sup ( A ,  RR ,  <  )  +  B ) ) )
4645ralbidv 2986 . . . . . . 7  |-  ( x  =  ( sup ( A ,  RR ,  <  )  +  B )  ->  ( A. w  e.  C  w  <_  x  <->  A. w  e.  C  w  <_  ( sup ( A ,  RR ,  <  )  +  B ) ) )
4746rspcev 3309 . . . . . 6  |-  ( ( ( sup ( A ,  RR ,  <  )  +  B )  e.  RR  /\  A. w  e.  C  w  <_  ( sup ( A ,  RR ,  <  )  +  B ) )  ->  E. x  e.  RR  A. w  e.  C  w  <_  x )
4844, 27, 47syl2anc 693 . . . . 5  |-  ( ph  ->  E. x  e.  RR  A. w  e.  C  w  <_  x )
49 suprleub 10989 . . . . 5  |-  ( ( ( C  C_  RR  /\  C  =/=  (/)  /\  E. x  e.  RR  A. w  e.  C  w  <_  x )  /\  ( sup ( A ,  RR ,  <  )  +  B
)  e.  RR )  ->  ( sup ( C ,  RR ,  <  )  <_  ( sup ( A ,  RR ,  <  )  +  B )  <->  A. w  e.  C  w  <_  ( sup ( A ,  RR ,  <  )  +  B ) ) )
5033, 43, 48, 44, 49syl31anc 1329 . . . 4  |-  ( ph  ->  ( sup ( C ,  RR ,  <  )  <_  ( sup ( A ,  RR ,  <  )  +  B )  <->  A. w  e.  C  w  <_  ( sup ( A ,  RR ,  <  )  +  B ) ) )
5127, 50mpbird 247 . . 3  |-  ( ph  ->  sup ( C ,  RR ,  <  )  <_ 
( sup ( A ,  RR ,  <  )  +  B ) )
52 suprcl 10983 . . . . . . . 8  |-  ( ( C  C_  RR  /\  C  =/=  (/)  /\  E. x  e.  RR  A. w  e.  C  w  <_  x
)  ->  sup ( C ,  RR ,  <  )  e.  RR )
5333, 43, 48, 52syl3anc 1326 . . . . . . 7  |-  ( ph  ->  sup ( C ,  RR ,  <  )  e.  RR )
5453, 17, 15ltsubaddd 10623 . . . . . 6  |-  ( ph  ->  ( ( sup ( C ,  RR ,  <  )  -  B )  <  sup ( A ,  RR ,  <  )  <->  sup ( C ,  RR ,  <  )  <  ( sup ( A ,  RR ,  <  )  +  B
) ) )
5554biimpar 502 . . . . 5  |-  ( (
ph  /\  sup ( C ,  RR ,  <  )  <  ( sup ( A ,  RR ,  <  )  +  B
) )  ->  ( sup ( C ,  RR ,  <  )  -  B
)  <  sup ( A ,  RR ,  <  ) )
5653, 17resubcld 10458 . . . . . . 7  |-  ( ph  ->  ( sup ( C ,  RR ,  <  )  -  B )  e.  RR )
57 suprlub 10987 . . . . . . 7  |-  ( ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  /\  ( sup ( C ,  RR ,  <  )  -  B
)  e.  RR )  ->  ( ( sup ( C ,  RR ,  <  )  -  B
)  <  sup ( A ,  RR ,  <  )  <->  E. a  e.  A  ( sup ( C ,  RR ,  <  )  -  B )  <  a
) )
5810, 12, 13, 56, 57syl31anc 1329 . . . . . 6  |-  ( ph  ->  ( ( sup ( C ,  RR ,  <  )  -  B )  <  sup ( A ,  RR ,  <  )  <->  E. a  e.  A  ( sup ( C ,  RR ,  <  )  -  B )  <  a ) )
5958adantr 481 . . . . 5  |-  ( (
ph  /\  sup ( C ,  RR ,  <  )  <  ( sup ( A ,  RR ,  <  )  +  B
) )  ->  (
( sup ( C ,  RR ,  <  )  -  B )  <  sup ( A ,  RR ,  <  )  <->  E. a  e.  A  ( sup ( C ,  RR ,  <  )  -  B )  <  a ) )
6055, 59mpbid 222 . . . 4  |-  ( (
ph  /\  sup ( C ,  RR ,  <  )  <  ( sup ( A ,  RR ,  <  )  +  B
) )  ->  E. a  e.  A  ( sup ( C ,  RR ,  <  )  -  B )  <  a )
61 rspe 3003 . . . . . . . . . . . . . 14  |-  ( ( a  e.  A  /\  w  =  ( a  +  B ) )  ->  E. a  e.  A  w  =  ( a  +  B ) )
6261, 9sylibr 224 . . . . . . . . . . . . 13  |-  ( ( a  e.  A  /\  w  =  ( a  +  B ) )  ->  w  e.  C )
6362adantl 482 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( a  e.  A  /\  w  =  ( a  +  B ) ) )  ->  w  e.  C
)
64 simplrr 801 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
a  e.  A  /\  w  =  ( a  +  B ) ) )  /\  w  e.  C
)  ->  w  =  ( a  +  B
) )
6533, 43, 483jca 1242 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( C  C_  RR  /\  C  =/=  (/)  /\  E. x  e.  RR  A. w  e.  C  w  <_  x ) )
66 suprub 10984 . . . . . . . . . . . . . . 15  |-  ( ( ( C  C_  RR  /\  C  =/=  (/)  /\  E. x  e.  RR  A. w  e.  C  w  <_  x )  /\  w  e.  C )  ->  w  <_  sup ( C ,  RR ,  <  ) )
6765, 66sylan 488 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  w  e.  C )  ->  w  <_  sup ( C ,  RR ,  <  ) )
6867adantlr 751 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
a  e.  A  /\  w  =  ( a  +  B ) ) )  /\  w  e.  C
)  ->  w  <_  sup ( C ,  RR ,  <  ) )
6964, 68eqbrtrrd 4677 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
a  e.  A  /\  w  =  ( a  +  B ) ) )  /\  w  e.  C
)  ->  ( a  +  B )  <_  sup ( C ,  RR ,  <  ) )
7063, 69mpdan 702 . . . . . . . . . . 11  |-  ( (
ph  /\  ( a  e.  A  /\  w  =  ( a  +  B ) ) )  ->  ( a  +  B )  <_  sup ( C ,  RR ,  <  ) )
7170expr 643 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  A )  ->  (
w  =  ( a  +  B )  -> 
( a  +  B
)  <_  sup ( C ,  RR ,  <  ) ) )
7271exlimdv 1861 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  A )  ->  ( E. w  w  =  ( a  +  B
)  ->  ( a  +  B )  <_  sup ( C ,  RR ,  <  ) ) )
7335, 72mpi 20 . . . . . . . 8  |-  ( (
ph  /\  a  e.  A )  ->  (
a  +  B )  <_  sup ( C ,  RR ,  <  ) )
7473adantlr 751 . . . . . . 7  |-  ( ( ( ph  /\  sup ( C ,  RR ,  <  )  <  ( sup ( A ,  RR ,  <  )  +  B
) )  /\  a  e.  A )  ->  (
a  +  B )  <_  sup ( C ,  RR ,  <  ) )
7528adantlr 751 . . . . . . . 8  |-  ( ( ( ph  /\  sup ( C ,  RR ,  <  )  <  ( sup ( A ,  RR ,  <  )  +  B
) )  /\  a  e.  A )  ->  (
a  +  B )  e.  RR )
7653ad2antrr 762 . . . . . . . 8  |-  ( ( ( ph  /\  sup ( C ,  RR ,  <  )  <  ( sup ( A ,  RR ,  <  )  +  B
) )  /\  a  e.  A )  ->  sup ( C ,  RR ,  <  )  e.  RR )
7775, 76lenltd 10183 . . . . . . 7  |-  ( ( ( ph  /\  sup ( C ,  RR ,  <  )  <  ( sup ( A ,  RR ,  <  )  +  B
) )  /\  a  e.  A )  ->  (
( a  +  B
)  <_  sup ( C ,  RR ,  <  )  <->  -.  sup ( C ,  RR ,  <  )  <  ( a  +  B ) ) )
7874, 77mpbid 222 . . . . . 6  |-  ( ( ( ph  /\  sup ( C ,  RR ,  <  )  <  ( sup ( A ,  RR ,  <  )  +  B
) )  /\  a  e.  A )  ->  -.  sup ( C ,  RR ,  <  )  <  (
a  +  B ) )
7917ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  sup ( C ,  RR ,  <  )  <  ( sup ( A ,  RR ,  <  )  +  B
) )  /\  a  e.  A )  ->  B  e.  RR )
8011adantlr 751 . . . . . . 7  |-  ( ( ( ph  /\  sup ( C ,  RR ,  <  )  <  ( sup ( A ,  RR ,  <  )  +  B
) )  /\  a  e.  A )  ->  a  e.  RR )
8176, 79, 80ltsubaddd 10623 . . . . . 6  |-  ( ( ( ph  /\  sup ( C ,  RR ,  <  )  <  ( sup ( A ,  RR ,  <  )  +  B
) )  /\  a  e.  A )  ->  (
( sup ( C ,  RR ,  <  )  -  B )  < 
a  <->  sup ( C ,  RR ,  <  )  < 
( a  +  B
) ) )
8278, 81mtbird 315 . . . . 5  |-  ( ( ( ph  /\  sup ( C ,  RR ,  <  )  <  ( sup ( A ,  RR ,  <  )  +  B
) )  /\  a  e.  A )  ->  -.  ( sup ( C ,  RR ,  <  )  -  B )  <  a
)
8382nrexdv 3001 . . . 4  |-  ( (
ph  /\  sup ( C ,  RR ,  <  )  <  ( sup ( A ,  RR ,  <  )  +  B
) )  ->  -.  E. a  e.  A  ( sup ( C ,  RR ,  <  )  -  B )  <  a
)
8460, 83pm2.65da 600 . . 3  |-  ( ph  ->  -.  sup ( C ,  RR ,  <  )  <  ( sup ( A ,  RR ,  <  )  +  B ) )
8553, 44eqleltd 10181 . . 3  |-  ( ph  ->  ( sup ( C ,  RR ,  <  )  =  ( sup ( A ,  RR ,  <  )  +  B )  <-> 
( sup ( C ,  RR ,  <  )  <_  ( sup ( A ,  RR ,  <  )  +  B )  /\  -.  sup ( C ,  RR ,  <  )  <  ( sup ( A ,  RR ,  <  )  +  B
) ) ) )
8651, 84, 85mpbir2and 957 . 2  |-  ( ph  ->  sup ( C ,  RR ,  <  )  =  ( sup ( A ,  RR ,  <  )  +  B ) )
8786eqcomd 2628 1  |-  ( ph  ->  ( sup ( A ,  RR ,  <  )  +  B )  =  sup ( C ,  RR ,  <  ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608    =/= wne 2794   A.wral 2912   E.wrex 2913    C_ wss 3574   (/)c0 3915   class class class wbr 4653  (class class class)co 6650   supcsup 8346   RRcr 9935    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269
This theorem is referenced by:  supadd  10991  supsubc  39569
  Copyright terms: Public domain W3C validator