MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supicc Structured version   Visualization version   GIF version

Theorem supicc 12320
Description: Supremum of a bounded set of real numbers. (Contributed by Thierry Arnoux, 17-May-2019.)
Hypotheses
Ref Expression
supicc.1 (𝜑𝐵 ∈ ℝ)
supicc.2 (𝜑𝐶 ∈ ℝ)
supicc.3 (𝜑𝐴 ⊆ (𝐵[,]𝐶))
supicc.4 (𝜑𝐴 ≠ ∅)
Assertion
Ref Expression
supicc (𝜑 → sup(𝐴, ℝ, < ) ∈ (𝐵[,]𝐶))

Proof of Theorem supicc
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supicc.3 . . . 4 (𝜑𝐴 ⊆ (𝐵[,]𝐶))
2 supicc.1 . . . . 5 (𝜑𝐵 ∈ ℝ)
3 supicc.2 . . . . 5 (𝜑𝐶 ∈ ℝ)
4 iccssre 12255 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵[,]𝐶) ⊆ ℝ)
52, 3, 4syl2anc 693 . . . 4 (𝜑 → (𝐵[,]𝐶) ⊆ ℝ)
61, 5sstrd 3613 . . 3 (𝜑𝐴 ⊆ ℝ)
7 supicc.4 . . 3 (𝜑𝐴 ≠ ∅)
82adantr 481 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
98rexrd 10089 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
103adantr 481 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
1110rexrd 10089 . . . . . 6 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ*)
121sselda 3603 . . . . . 6 ((𝜑𝑥𝐴) → 𝑥 ∈ (𝐵[,]𝐶))
13 iccleub 12229 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐵[,]𝐶)) → 𝑥𝐶)
149, 11, 12, 13syl3anc 1326 . . . . 5 ((𝜑𝑥𝐴) → 𝑥𝐶)
1514ralrimiva 2966 . . . 4 (𝜑 → ∀𝑥𝐴 𝑥𝐶)
16 breq2 4657 . . . . . 6 (𝑦 = 𝐶 → (𝑥𝑦𝑥𝐶))
1716ralbidv 2986 . . . . 5 (𝑦 = 𝐶 → (∀𝑥𝐴 𝑥𝑦 ↔ ∀𝑥𝐴 𝑥𝐶))
1817rspcev 3309 . . . 4 ((𝐶 ∈ ℝ ∧ ∀𝑥𝐴 𝑥𝐶) → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦)
193, 15, 18syl2anc 693 . . 3 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦)
20 suprcl 10983 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦) → sup(𝐴, ℝ, < ) ∈ ℝ)
216, 7, 19, 20syl3anc 1326 . 2 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ)
226sselda 3603 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
231adantr 481 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐴 ⊆ (𝐵[,]𝐶))
24 simpr 477 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑥𝐴)
25 iccsupr 12266 . . . . . . 7 (((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝐴 ⊆ (𝐵[,]𝐶) ∧ 𝑥𝐴) → (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦))
268, 10, 23, 24, 25syl211anc 1332 . . . . . 6 ((𝜑𝑥𝐴) → (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦))
2726, 20syl 17 . . . . 5 ((𝜑𝑥𝐴) → sup(𝐴, ℝ, < ) ∈ ℝ)
28 iccgelb 12230 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐵[,]𝐶)) → 𝐵𝑥)
299, 11, 12, 28syl3anc 1326 . . . . 5 ((𝜑𝑥𝐴) → 𝐵𝑥)
30 suprub 10984 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦) ∧ 𝑥𝐴) → 𝑥 ≤ sup(𝐴, ℝ, < ))
3126, 24, 30syl2anc 693 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ≤ sup(𝐴, ℝ, < ))
328, 22, 27, 29, 31letrd 10194 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ≤ sup(𝐴, ℝ, < ))
3332ralrimiva 2966 . . 3 (𝜑 → ∀𝑥𝐴 𝐵 ≤ sup(𝐴, ℝ, < ))
34 r19.3rzv 4064 . . . 4 (𝐴 ≠ ∅ → (𝐵 ≤ sup(𝐴, ℝ, < ) ↔ ∀𝑥𝐴 𝐵 ≤ sup(𝐴, ℝ, < )))
357, 34syl 17 . . 3 (𝜑 → (𝐵 ≤ sup(𝐴, ℝ, < ) ↔ ∀𝑥𝐴 𝐵 ≤ sup(𝐴, ℝ, < )))
3633, 35mpbird 247 . 2 (𝜑𝐵 ≤ sup(𝐴, ℝ, < ))
37 suprleub 10989 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦) ∧ 𝐶 ∈ ℝ) → (sup(𝐴, ℝ, < ) ≤ 𝐶 ↔ ∀𝑥𝐴 𝑥𝐶))
386, 7, 19, 3, 37syl31anc 1329 . . 3 (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐶 ↔ ∀𝑥𝐴 𝑥𝐶))
3915, 38mpbird 247 . 2 (𝜑 → sup(𝐴, ℝ, < ) ≤ 𝐶)
40 elicc2 12238 . . 3 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (sup(𝐴, ℝ, < ) ∈ (𝐵[,]𝐶) ↔ (sup(𝐴, ℝ, < ) ∈ ℝ ∧ 𝐵 ≤ sup(𝐴, ℝ, < ) ∧ sup(𝐴, ℝ, < ) ≤ 𝐶)))
412, 3, 40syl2anc 693 . 2 (𝜑 → (sup(𝐴, ℝ, < ) ∈ (𝐵[,]𝐶) ↔ (sup(𝐴, ℝ, < ) ∈ ℝ ∧ 𝐵 ≤ sup(𝐴, ℝ, < ) ∧ sup(𝐴, ℝ, < ) ≤ 𝐶)))
4221, 36, 39, 41mpbir3and 1245 1 (𝜑 → sup(𝐴, ℝ, < ) ∈ (𝐵[,]𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  wss 3574  c0 3915   class class class wbr 4653  (class class class)co 6650  supcsup 8346  cr 9935  *cxr 10073   < clt 10074  cle 10075  [,]cicc 12178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-icc 12182
This theorem is referenced by:  supicclub2  12323  hoidmv1lelem1  40805  hoidmvlelem1  40809
  Copyright terms: Public domain W3C validator