Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supsubc Structured version   Visualization version   Unicode version

Theorem supsubc 39569
Description: The supremum function distributes over subtraction in a sense similar to that in supaddc 10990. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
supsubc.a1  |-  ( ph  ->  A  C_  RR )
supsubc.a2  |-  ( ph  ->  A  =/=  (/) )
supsubc.a3  |-  ( ph  ->  E. x  e.  RR  A. y  e.  A  y  <_  x )
supsubc.b  |-  ( ph  ->  B  e.  RR )
supsubc.c  |-  C  =  { z  |  E. v  e.  A  z  =  ( v  -  B ) }
Assertion
Ref Expression
supsubc  |-  ( ph  ->  ( sup ( A ,  RR ,  <  )  -  B )  =  sup ( C ,  RR ,  <  ) )
Distinct variable groups:    v, A, x, y, z    v, B, x, y, z    ph, v,
z
Allowed substitution hints:    ph( x, y)    C( x, y, z, v)

Proof of Theorem supsubc
StepHypRef Expression
1 supsubc.c . . . . 5  |-  C  =  { z  |  E. v  e.  A  z  =  ( v  -  B ) }
21a1i 11 . . . 4  |-  ( ph  ->  C  =  { z  |  E. v  e.  A  z  =  ( v  -  B ) } )
3 supsubc.a1 . . . . . . . . . . 11  |-  ( ph  ->  A  C_  RR )
43sselda 3603 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  A )  ->  v  e.  RR )
54recnd 10068 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  A )  ->  v  e.  CC )
6 supsubc.b . . . . . . . . . . 11  |-  ( ph  ->  B  e.  RR )
76recnd 10068 . . . . . . . . . 10  |-  ( ph  ->  B  e.  CC )
87adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  A )  ->  B  e.  CC )
95, 8negsubd 10398 . . . . . . . 8  |-  ( (
ph  /\  v  e.  A )  ->  (
v  +  -u B
)  =  ( v  -  B ) )
109eqcomd 2628 . . . . . . 7  |-  ( (
ph  /\  v  e.  A )  ->  (
v  -  B )  =  ( v  + 
-u B ) )
1110eqeq2d 2632 . . . . . 6  |-  ( (
ph  /\  v  e.  A )  ->  (
z  =  ( v  -  B )  <->  z  =  ( v  +  -u B ) ) )
1211rexbidva 3049 . . . . 5  |-  ( ph  ->  ( E. v  e.  A  z  =  ( v  -  B )  <->  E. v  e.  A  z  =  ( v  +  -u B ) ) )
1312abbidv 2741 . . . 4  |-  ( ph  ->  { z  |  E. v  e.  A  z  =  ( v  -  B ) }  =  { z  |  E. v  e.  A  z  =  ( v  + 
-u B ) } )
14 eqidd 2623 . . . 4  |-  ( ph  ->  { z  |  E. v  e.  A  z  =  ( v  + 
-u B ) }  =  { z  |  E. v  e.  A  z  =  ( v  +  -u B ) } )
152, 13, 143eqtrd 2660 . . 3  |-  ( ph  ->  C  =  { z  |  E. v  e.  A  z  =  ( v  +  -u B
) } )
1615supeq1d 8352 . 2  |-  ( ph  ->  sup ( C ,  RR ,  <  )  =  sup ( { z  |  E. v  e.  A  z  =  ( v  +  -u B
) } ,  RR ,  <  ) )
17 supsubc.a2 . . . 4  |-  ( ph  ->  A  =/=  (/) )
18 supsubc.a3 . . . 4  |-  ( ph  ->  E. x  e.  RR  A. y  e.  A  y  <_  x )
196renegcld 10457 . . . 4  |-  ( ph  -> 
-u B  e.  RR )
20 eqid 2622 . . . 4  |-  { z  |  E. v  e.  A  z  =  ( v  +  -u B
) }  =  {
z  |  E. v  e.  A  z  =  ( v  +  -u B ) }
213, 17, 18, 19, 20supaddc 10990 . . 3  |-  ( ph  ->  ( sup ( A ,  RR ,  <  )  +  -u B )  =  sup ( { z  |  E. v  e.  A  z  =  ( v  +  -u B
) } ,  RR ,  <  ) )
2221eqcomd 2628 . 2  |-  ( ph  ->  sup ( { z  |  E. v  e.  A  z  =  ( v  +  -u B
) } ,  RR ,  <  )  =  ( sup ( A ,  RR ,  <  )  + 
-u B ) )
23 suprcl 10983 . . . . 5  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  sup ( A ,  RR ,  <  )  e.  RR )
243, 17, 18, 23syl3anc 1326 . . . 4  |-  ( ph  ->  sup ( A ,  RR ,  <  )  e.  RR )
2524recnd 10068 . . 3  |-  ( ph  ->  sup ( A ,  RR ,  <  )  e.  CC )
2625, 7negsubd 10398 . 2  |-  ( ph  ->  ( sup ( A ,  RR ,  <  )  +  -u B )  =  ( sup ( A ,  RR ,  <  )  -  B ) )
2716, 22, 263eqtrrd 2661 1  |-  ( ph  ->  ( sup ( A ,  RR ,  <  )  -  B )  =  sup ( C ,  RR ,  <  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608    =/= wne 2794   A.wral 2912   E.wrex 2913    C_ wss 3574   (/)c0 3915   class class class wbr 4653  (class class class)co 6650   supcsup 8346   CCcc 9934   RRcr 9935    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266   -ucneg 10267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269
This theorem is referenced by:  hoidmvlelem1  40809
  Copyright terms: Public domain W3C validator