![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > trlreslem | Structured version Visualization version GIF version |
Description: Lemma for trlres 26597. Formerly part of proof of eupthres 27075. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 6-Mar-2021.) |
Ref | Expression |
---|---|
trlres.v | ⊢ 𝑉 = (Vtx‘𝐺) |
trlres.i | ⊢ 𝐼 = (iEdg‘𝐺) |
trlres.d | ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
trlres.n | ⊢ (𝜑 → 𝑁 ∈ (0..^(#‘𝐹))) |
trlres.h | ⊢ 𝐻 = (𝐹 ↾ (0..^𝑁)) |
Ref | Expression |
---|---|
trlreslem | ⊢ (𝜑 → 𝐻:(0..^(#‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trlres.d | . . . 4 ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) | |
2 | trlres.i | . . . . 5 ⊢ 𝐼 = (iEdg‘𝐺) | |
3 | 2 | trlf1 26595 | . . . 4 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼) |
4 | 1, 3 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼) |
5 | trlres.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (0..^(#‘𝐹))) | |
6 | elfzouz2 12484 | . . . 4 ⊢ (𝑁 ∈ (0..^(#‘𝐹)) → (#‘𝐹) ∈ (ℤ≥‘𝑁)) | |
7 | fzoss2 12496 | . . . 4 ⊢ ((#‘𝐹) ∈ (ℤ≥‘𝑁) → (0..^𝑁) ⊆ (0..^(#‘𝐹))) | |
8 | 5, 6, 7 | 3syl 18 | . . 3 ⊢ (𝜑 → (0..^𝑁) ⊆ (0..^(#‘𝐹))) |
9 | f1ores 6151 | . . 3 ⊢ ((𝐹:(0..^(#‘𝐹))–1-1→dom 𝐼 ∧ (0..^𝑁) ⊆ (0..^(#‘𝐹))) → (𝐹 ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(𝐹 “ (0..^𝑁))) | |
10 | 4, 8, 9 | syl2anc 693 | . 2 ⊢ (𝜑 → (𝐹 ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(𝐹 “ (0..^𝑁))) |
11 | trlres.h | . . . 4 ⊢ 𝐻 = (𝐹 ↾ (0..^𝑁)) | |
12 | 11 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐻 = (𝐹 ↾ (0..^𝑁))) |
13 | 11 | fveq2i 6194 | . . . . 5 ⊢ (#‘𝐻) = (#‘(𝐹 ↾ (0..^𝑁))) |
14 | trliswlk 26594 | . . . . . . 7 ⊢ (𝐹(Trails‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
15 | 2 | wlkf 26510 | . . . . . . 7 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom 𝐼) |
16 | 1, 14, 15 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ Word dom 𝐼) |
17 | elfzofz 12485 | . . . . . . 7 ⊢ (𝑁 ∈ (0..^(#‘𝐹)) → 𝑁 ∈ (0...(#‘𝐹))) | |
18 | 5, 17 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ (0...(#‘𝐹))) |
19 | wlkreslem0 26565 | . . . . . 6 ⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑁 ∈ (0...(#‘𝐹))) → (#‘(𝐹 ↾ (0..^𝑁))) = 𝑁) | |
20 | 16, 18, 19 | syl2anc 693 | . . . . 5 ⊢ (𝜑 → (#‘(𝐹 ↾ (0..^𝑁))) = 𝑁) |
21 | 13, 20 | syl5eq 2668 | . . . 4 ⊢ (𝜑 → (#‘𝐻) = 𝑁) |
22 | 21 | oveq2d 6666 | . . 3 ⊢ (𝜑 → (0..^(#‘𝐻)) = (0..^𝑁)) |
23 | wrdf 13310 | . . . . . 6 ⊢ (𝐹 ∈ Word dom 𝐼 → 𝐹:(0..^(#‘𝐹))⟶dom 𝐼) | |
24 | fimass 6081 | . . . . . 6 ⊢ (𝐹:(0..^(#‘𝐹))⟶dom 𝐼 → (𝐹 “ (0..^𝑁)) ⊆ dom 𝐼) | |
25 | 15, 23, 24 | 3syl 18 | . . . . 5 ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐹 “ (0..^𝑁)) ⊆ dom 𝐼) |
26 | 1, 14, 25 | 3syl 18 | . . . 4 ⊢ (𝜑 → (𝐹 “ (0..^𝑁)) ⊆ dom 𝐼) |
27 | ssdmres 5420 | . . . 4 ⊢ ((𝐹 “ (0..^𝑁)) ⊆ dom 𝐼 ↔ dom (𝐼 ↾ (𝐹 “ (0..^𝑁))) = (𝐹 “ (0..^𝑁))) | |
28 | 26, 27 | sylib 208 | . . 3 ⊢ (𝜑 → dom (𝐼 ↾ (𝐹 “ (0..^𝑁))) = (𝐹 “ (0..^𝑁))) |
29 | 12, 22, 28 | f1oeq123d 6133 | . 2 ⊢ (𝜑 → (𝐻:(0..^(#‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁))) ↔ (𝐹 ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(𝐹 “ (0..^𝑁)))) |
30 | 10, 29 | mpbird 247 | 1 ⊢ (𝜑 → 𝐻:(0..^(#‘𝐻))–1-1-onto→dom (𝐼 ↾ (𝐹 “ (0..^𝑁)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 ⊆ wss 3574 class class class wbr 4653 dom cdm 5114 ↾ cres 5116 “ cima 5117 ⟶wf 5884 –1-1→wf1 5885 –1-1-onto→wf1o 5887 ‘cfv 5888 (class class class)co 6650 0cc0 9936 ℤ≥cuz 11687 ...cfz 12326 ..^cfzo 12465 #chash 13117 Word cword 13291 Vtxcvtx 25874 iEdgciedg 25875 Walkscwlks 26492 Trailsctrls 26587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ifp 1013 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-er 7742 df-map 7859 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-fzo 12466 df-hash 13118 df-word 13299 df-substr 13303 df-wlks 26495 df-trls 26589 |
This theorem is referenced by: trlres 26597 eupthres 27075 |
Copyright terms: Public domain | W3C validator |