![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > usgrres1 | Structured version Visualization version GIF version |
Description: Restricting a simple graph by removing one vertex results in a simple graph. Remark: This restricted graph is not a subgraph of the original graph in the sense of df-subgr 26160 since the domains of the edge functions may not be compatible. (Contributed by Alexander van der Vekens, 2-Jan-2018.) (Revised by AV, 10-Jan-2020.) (Revised by AV, 23-Oct-2020.) (Proof shortened by AV, 27-Nov-2020.) |
Ref | Expression |
---|---|
upgrres1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
upgrres1.e | ⊢ 𝐸 = (Edg‘𝐺) |
upgrres1.f | ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} |
upgrres1.s | ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 |
Ref | Expression |
---|---|
usgrres1 | ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ USGraph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oi 6174 | . . . . 5 ⊢ ( I ↾ 𝐹):𝐹–1-1-onto→𝐹 | |
2 | f1of1 6136 | . . . . 5 ⊢ (( I ↾ 𝐹):𝐹–1-1-onto→𝐹 → ( I ↾ 𝐹):𝐹–1-1→𝐹) | |
3 | 1, 2 | mp1i 13 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → ( I ↾ 𝐹):𝐹–1-1→𝐹) |
4 | eqidd 2623 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → ( I ↾ 𝐹) = ( I ↾ 𝐹)) | |
5 | dmresi 5457 | . . . . . 6 ⊢ dom ( I ↾ 𝐹) = 𝐹 | |
6 | 5 | a1i 11 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → dom ( I ↾ 𝐹) = 𝐹) |
7 | eqidd 2623 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → 𝐹 = 𝐹) | |
8 | 4, 6, 7 | f1eq123d 6131 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → (( I ↾ 𝐹):dom ( I ↾ 𝐹)–1-1→𝐹 ↔ ( I ↾ 𝐹):𝐹–1-1→𝐹)) |
9 | 3, 8 | mpbird 247 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → ( I ↾ 𝐹):dom ( I ↾ 𝐹)–1-1→𝐹) |
10 | usgrumgr 26074 | . . . 4 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph ) | |
11 | upgrres1.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
12 | upgrres1.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
13 | upgrres1.f | . . . . 5 ⊢ 𝐹 = {𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒} | |
14 | 11, 12, 13 | umgrres1lem 26202 | . . . 4 ⊢ ((𝐺 ∈ UMGraph ∧ 𝑁 ∈ 𝑉) → ran ( I ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (#‘𝑝) = 2}) |
15 | 10, 14 | sylan 488 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → ran ( I ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (#‘𝑝) = 2}) |
16 | f1ssr 6107 | . . 3 ⊢ ((( I ↾ 𝐹):dom ( I ↾ 𝐹)–1-1→𝐹 ∧ ran ( I ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (#‘𝑝) = 2}) → ( I ↾ 𝐹):dom ( I ↾ 𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (#‘𝑝) = 2}) | |
17 | 9, 15, 16 | syl2anc 693 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → ( I ↾ 𝐹):dom ( I ↾ 𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (#‘𝑝) = 2}) |
18 | upgrres1.s | . . . 4 ⊢ 𝑆 = 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 | |
19 | opex 4932 | . . . 4 ⊢ 〈(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)〉 ∈ V | |
20 | 18, 19 | eqeltri 2697 | . . 3 ⊢ 𝑆 ∈ V |
21 | 11, 12, 13, 18 | upgrres1lem2 26203 | . . . . 5 ⊢ (Vtx‘𝑆) = (𝑉 ∖ {𝑁}) |
22 | 21 | eqcomi 2631 | . . . 4 ⊢ (𝑉 ∖ {𝑁}) = (Vtx‘𝑆) |
23 | 11, 12, 13, 18 | upgrres1lem3 26204 | . . . . 5 ⊢ (iEdg‘𝑆) = ( I ↾ 𝐹) |
24 | 23 | eqcomi 2631 | . . . 4 ⊢ ( I ↾ 𝐹) = (iEdg‘𝑆) |
25 | 22, 24 | isusgrs 26051 | . . 3 ⊢ (𝑆 ∈ V → (𝑆 ∈ USGraph ↔ ( I ↾ 𝐹):dom ( I ↾ 𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (#‘𝑝) = 2})) |
26 | 20, 25 | mp1i 13 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → (𝑆 ∈ USGraph ↔ ( I ↾ 𝐹):dom ( I ↾ 𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (#‘𝑝) = 2})) |
27 | 17, 26 | mpbird 247 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → 𝑆 ∈ USGraph ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∉ wnel 2897 {crab 2916 Vcvv 3200 ∖ cdif 3571 ⊆ wss 3574 𝒫 cpw 4158 {csn 4177 〈cop 4183 I cid 5023 dom cdm 5114 ran crn 5115 ↾ cres 5116 –1-1→wf1 5885 –1-1-onto→wf1o 5887 ‘cfv 5888 2c2 11070 #chash 13117 Vtxcvtx 25874 iEdgciedg 25875 Edgcedg 25939 UMGraph cumgr 25976 USGraph cusgr 26044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-card 8765 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-n0 11293 df-z 11378 df-uz 11688 df-fz 12327 df-hash 13118 df-vtx 25876 df-iedg 25877 df-edg 25940 df-uhgr 25953 df-upgr 25977 df-umgr 25978 df-usgr 26046 |
This theorem is referenced by: fusgrfis 26222 cusgrres 26344 |
Copyright terms: Public domain | W3C validator |