MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrres1 Structured version   Visualization version   GIF version

Theorem usgrres1 26207
Description: Restricting a simple graph by removing one vertex results in a simple graph. Remark: This restricted graph is not a subgraph of the original graph in the sense of df-subgr 26160 since the domains of the edge functions may not be compatible. (Contributed by Alexander van der Vekens, 2-Jan-2018.) (Revised by AV, 10-Jan-2020.) (Revised by AV, 23-Oct-2020.) (Proof shortened by AV, 27-Nov-2020.)
Hypotheses
Ref Expression
upgrres1.v 𝑉 = (Vtx‘𝐺)
upgrres1.e 𝐸 = (Edg‘𝐺)
upgrres1.f 𝐹 = {𝑒𝐸𝑁𝑒}
upgrres1.s 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
Assertion
Ref Expression
usgrres1 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → 𝑆 ∈ USGraph )
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁   𝑒,𝑉
Allowed substitution hints:   𝑆(𝑒)   𝐹(𝑒)

Proof of Theorem usgrres1
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 f1oi 6174 . . . . 5 ( I ↾ 𝐹):𝐹1-1-onto𝐹
2 f1of1 6136 . . . . 5 (( I ↾ 𝐹):𝐹1-1-onto𝐹 → ( I ↾ 𝐹):𝐹1-1𝐹)
31, 2mp1i 13 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → ( I ↾ 𝐹):𝐹1-1𝐹)
4 eqidd 2623 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → ( I ↾ 𝐹) = ( I ↾ 𝐹))
5 dmresi 5457 . . . . . 6 dom ( I ↾ 𝐹) = 𝐹
65a1i 11 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → dom ( I ↾ 𝐹) = 𝐹)
7 eqidd 2623 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → 𝐹 = 𝐹)
84, 6, 7f1eq123d 6131 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → (( I ↾ 𝐹):dom ( I ↾ 𝐹)–1-1𝐹 ↔ ( I ↾ 𝐹):𝐹1-1𝐹))
93, 8mpbird 247 . . 3 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → ( I ↾ 𝐹):dom ( I ↾ 𝐹)–1-1𝐹)
10 usgrumgr 26074 . . . 4 (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph )
11 upgrres1.v . . . . 5 𝑉 = (Vtx‘𝐺)
12 upgrres1.e . . . . 5 𝐸 = (Edg‘𝐺)
13 upgrres1.f . . . . 5 𝐹 = {𝑒𝐸𝑁𝑒}
1411, 12, 13umgrres1lem 26202 . . . 4 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → ran ( I ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (#‘𝑝) = 2})
1510, 14sylan 488 . . 3 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → ran ( I ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (#‘𝑝) = 2})
16 f1ssr 6107 . . 3 ((( I ↾ 𝐹):dom ( I ↾ 𝐹)–1-1𝐹 ∧ ran ( I ↾ 𝐹) ⊆ {𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (#‘𝑝) = 2}) → ( I ↾ 𝐹):dom ( I ↾ 𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (#‘𝑝) = 2})
179, 15, 16syl2anc 693 . 2 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → ( I ↾ 𝐹):dom ( I ↾ 𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (#‘𝑝) = 2})
18 upgrres1.s . . . 4 𝑆 = ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩
19 opex 4932 . . . 4 ⟨(𝑉 ∖ {𝑁}), ( I ↾ 𝐹)⟩ ∈ V
2018, 19eqeltri 2697 . . 3 𝑆 ∈ V
2111, 12, 13, 18upgrres1lem2 26203 . . . . 5 (Vtx‘𝑆) = (𝑉 ∖ {𝑁})
2221eqcomi 2631 . . . 4 (𝑉 ∖ {𝑁}) = (Vtx‘𝑆)
2311, 12, 13, 18upgrres1lem3 26204 . . . . 5 (iEdg‘𝑆) = ( I ↾ 𝐹)
2423eqcomi 2631 . . . 4 ( I ↾ 𝐹) = (iEdg‘𝑆)
2522, 24isusgrs 26051 . . 3 (𝑆 ∈ V → (𝑆 ∈ USGraph ↔ ( I ↾ 𝐹):dom ( I ↾ 𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (#‘𝑝) = 2}))
2620, 25mp1i 13 . 2 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → (𝑆 ∈ USGraph ↔ ( I ↾ 𝐹):dom ( I ↾ 𝐹)–1-1→{𝑝 ∈ 𝒫 (𝑉 ∖ {𝑁}) ∣ (#‘𝑝) = 2}))
2717, 26mpbird 247 1 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → 𝑆 ∈ USGraph )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wnel 2897  {crab 2916  Vcvv 3200  cdif 3571  wss 3574  𝒫 cpw 4158  {csn 4177  cop 4183   I cid 5023  dom cdm 5114  ran crn 5115  cres 5116  1-1wf1 5885  1-1-ontowf1o 5887  cfv 5888  2c2 11070  #chash 13117  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   UMGraph cumgr 25976   USGraph cusgr 26044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-vtx 25876  df-iedg 25877  df-edg 25940  df-uhgr 25953  df-upgr 25977  df-umgr 25978  df-usgr 26046
This theorem is referenced by:  fusgrfis  26222  cusgrres  26344
  Copyright terms: Public domain W3C validator