MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzrdgxfr Structured version   Visualization version   GIF version

Theorem uzrdgxfr 12766
Description: Transfer the value of the recursive sequence builder from one base to another. (Contributed by Mario Carneiro, 1-Apr-2014.)
Hypotheses
Ref Expression
uzrdgxfr.1 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω)
uzrdgxfr.2 𝐻 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐵) ↾ ω)
uzrdgxfr.3 𝐴 ∈ ℤ
uzrdgxfr.4 𝐵 ∈ ℤ
Assertion
Ref Expression
uzrdgxfr (𝑁 ∈ ω → (𝐺𝑁) = ((𝐻𝑁) + (𝐴𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝐺(𝑥)   𝐻(𝑥)   𝑁(𝑥)

Proof of Theorem uzrdgxfr
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . 3 (𝑦 = ∅ → (𝐺𝑦) = (𝐺‘∅))
2 fveq2 6191 . . . 4 (𝑦 = ∅ → (𝐻𝑦) = (𝐻‘∅))
32oveq1d 6665 . . 3 (𝑦 = ∅ → ((𝐻𝑦) + (𝐴𝐵)) = ((𝐻‘∅) + (𝐴𝐵)))
41, 3eqeq12d 2637 . 2 (𝑦 = ∅ → ((𝐺𝑦) = ((𝐻𝑦) + (𝐴𝐵)) ↔ (𝐺‘∅) = ((𝐻‘∅) + (𝐴𝐵))))
5 fveq2 6191 . . 3 (𝑦 = 𝑘 → (𝐺𝑦) = (𝐺𝑘))
6 fveq2 6191 . . . 4 (𝑦 = 𝑘 → (𝐻𝑦) = (𝐻𝑘))
76oveq1d 6665 . . 3 (𝑦 = 𝑘 → ((𝐻𝑦) + (𝐴𝐵)) = ((𝐻𝑘) + (𝐴𝐵)))
85, 7eqeq12d 2637 . 2 (𝑦 = 𝑘 → ((𝐺𝑦) = ((𝐻𝑦) + (𝐴𝐵)) ↔ (𝐺𝑘) = ((𝐻𝑘) + (𝐴𝐵))))
9 fveq2 6191 . . 3 (𝑦 = suc 𝑘 → (𝐺𝑦) = (𝐺‘suc 𝑘))
10 fveq2 6191 . . . 4 (𝑦 = suc 𝑘 → (𝐻𝑦) = (𝐻‘suc 𝑘))
1110oveq1d 6665 . . 3 (𝑦 = suc 𝑘 → ((𝐻𝑦) + (𝐴𝐵)) = ((𝐻‘suc 𝑘) + (𝐴𝐵)))
129, 11eqeq12d 2637 . 2 (𝑦 = suc 𝑘 → ((𝐺𝑦) = ((𝐻𝑦) + (𝐴𝐵)) ↔ (𝐺‘suc 𝑘) = ((𝐻‘suc 𝑘) + (𝐴𝐵))))
13 fveq2 6191 . . 3 (𝑦 = 𝑁 → (𝐺𝑦) = (𝐺𝑁))
14 fveq2 6191 . . . 4 (𝑦 = 𝑁 → (𝐻𝑦) = (𝐻𝑁))
1514oveq1d 6665 . . 3 (𝑦 = 𝑁 → ((𝐻𝑦) + (𝐴𝐵)) = ((𝐻𝑁) + (𝐴𝐵)))
1613, 15eqeq12d 2637 . 2 (𝑦 = 𝑁 → ((𝐺𝑦) = ((𝐻𝑦) + (𝐴𝐵)) ↔ (𝐺𝑁) = ((𝐻𝑁) + (𝐴𝐵))))
17 uzrdgxfr.4 . . . . 5 𝐵 ∈ ℤ
18 zcn 11382 . . . . 5 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
1917, 18ax-mp 5 . . . 4 𝐵 ∈ ℂ
20 uzrdgxfr.3 . . . . 5 𝐴 ∈ ℤ
21 zcn 11382 . . . . 5 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
2220, 21ax-mp 5 . . . 4 𝐴 ∈ ℂ
2319, 22pncan3i 10358 . . 3 (𝐵 + (𝐴𝐵)) = 𝐴
24 uzrdgxfr.2 . . . . 5 𝐻 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐵) ↾ ω)
2517, 24om2uz0i 12746 . . . 4 (𝐻‘∅) = 𝐵
2625oveq1i 6660 . . 3 ((𝐻‘∅) + (𝐴𝐵)) = (𝐵 + (𝐴𝐵))
27 uzrdgxfr.1 . . . 4 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐴) ↾ ω)
2820, 27om2uz0i 12746 . . 3 (𝐺‘∅) = 𝐴
2923, 26, 283eqtr4ri 2655 . 2 (𝐺‘∅) = ((𝐻‘∅) + (𝐴𝐵))
30 oveq1 6657 . . 3 ((𝐺𝑘) = ((𝐻𝑘) + (𝐴𝐵)) → ((𝐺𝑘) + 1) = (((𝐻𝑘) + (𝐴𝐵)) + 1))
3120, 27om2uzsuci 12747 . . . 4 (𝑘 ∈ ω → (𝐺‘suc 𝑘) = ((𝐺𝑘) + 1))
3217, 24om2uzsuci 12747 . . . . . 6 (𝑘 ∈ ω → (𝐻‘suc 𝑘) = ((𝐻𝑘) + 1))
3332oveq1d 6665 . . . . 5 (𝑘 ∈ ω → ((𝐻‘suc 𝑘) + (𝐴𝐵)) = (((𝐻𝑘) + 1) + (𝐴𝐵)))
3417, 24om2uzuzi 12748 . . . . . . . 8 (𝑘 ∈ ω → (𝐻𝑘) ∈ (ℤ𝐵))
35 eluzelz 11697 . . . . . . . 8 ((𝐻𝑘) ∈ (ℤ𝐵) → (𝐻𝑘) ∈ ℤ)
3634, 35syl 17 . . . . . . 7 (𝑘 ∈ ω → (𝐻𝑘) ∈ ℤ)
3736zcnd 11483 . . . . . 6 (𝑘 ∈ ω → (𝐻𝑘) ∈ ℂ)
38 ax-1cn 9994 . . . . . . 7 1 ∈ ℂ
3922, 19subcli 10357 . . . . . . 7 (𝐴𝐵) ∈ ℂ
40 add32 10254 . . . . . . 7 (((𝐻𝑘) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴𝐵) ∈ ℂ) → (((𝐻𝑘) + 1) + (𝐴𝐵)) = (((𝐻𝑘) + (𝐴𝐵)) + 1))
4138, 39, 40mp3an23 1416 . . . . . 6 ((𝐻𝑘) ∈ ℂ → (((𝐻𝑘) + 1) + (𝐴𝐵)) = (((𝐻𝑘) + (𝐴𝐵)) + 1))
4237, 41syl 17 . . . . 5 (𝑘 ∈ ω → (((𝐻𝑘) + 1) + (𝐴𝐵)) = (((𝐻𝑘) + (𝐴𝐵)) + 1))
4333, 42eqtrd 2656 . . . 4 (𝑘 ∈ ω → ((𝐻‘suc 𝑘) + (𝐴𝐵)) = (((𝐻𝑘) + (𝐴𝐵)) + 1))
4431, 43eqeq12d 2637 . . 3 (𝑘 ∈ ω → ((𝐺‘suc 𝑘) = ((𝐻‘suc 𝑘) + (𝐴𝐵)) ↔ ((𝐺𝑘) + 1) = (((𝐻𝑘) + (𝐴𝐵)) + 1)))
4530, 44syl5ibr 236 . 2 (𝑘 ∈ ω → ((𝐺𝑘) = ((𝐻𝑘) + (𝐴𝐵)) → (𝐺‘suc 𝑘) = ((𝐻‘suc 𝑘) + (𝐴𝐵))))
464, 8, 12, 16, 29, 45finds 7092 1 (𝑁 ∈ ω → (𝐺𝑁) = ((𝐻𝑁) + (𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  Vcvv 3200  c0 3915  cmpt 4729  cres 5116  suc csuc 5725  cfv 5888  (class class class)co 6650  ωcom 7065  reccrdg 7505  cc 9934  1c1 9937   + caddc 9939  cmin 10266  cz 11377  cuz 11687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688
This theorem is referenced by:  fz1isolem  13245
  Copyright terms: Public domain W3C validator