MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzrdgxfr Structured version   Visualization version   Unicode version

Theorem uzrdgxfr 12766
Description: Transfer the value of the recursive sequence builder from one base to another. (Contributed by Mario Carneiro, 1-Apr-2014.)
Hypotheses
Ref Expression
uzrdgxfr.1  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  A )  |`  om )
uzrdgxfr.2  |-  H  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  B )  |`  om )
uzrdgxfr.3  |-  A  e.  ZZ
uzrdgxfr.4  |-  B  e.  ZZ
Assertion
Ref Expression
uzrdgxfr  |-  ( N  e.  om  ->  ( G `  N )  =  ( ( H `
 N )  +  ( A  -  B
) ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    G( x)    H( x)    N( x)

Proof of Theorem uzrdgxfr
Dummy variables  k 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . 3  |-  ( y  =  (/)  ->  ( G `
 y )  =  ( G `  (/) ) )
2 fveq2 6191 . . . 4  |-  ( y  =  (/)  ->  ( H `
 y )  =  ( H `  (/) ) )
32oveq1d 6665 . . 3  |-  ( y  =  (/)  ->  ( ( H `  y )  +  ( A  -  B ) )  =  ( ( H `  (/) )  +  ( A  -  B ) ) )
41, 3eqeq12d 2637 . 2  |-  ( y  =  (/)  ->  ( ( G `  y )  =  ( ( H `
 y )  +  ( A  -  B
) )  <->  ( G `  (/) )  =  ( ( H `  (/) )  +  ( A  -  B
) ) ) )
5 fveq2 6191 . . 3  |-  ( y  =  k  ->  ( G `  y )  =  ( G `  k ) )
6 fveq2 6191 . . . 4  |-  ( y  =  k  ->  ( H `  y )  =  ( H `  k ) )
76oveq1d 6665 . . 3  |-  ( y  =  k  ->  (
( H `  y
)  +  ( A  -  B ) )  =  ( ( H `
 k )  +  ( A  -  B
) ) )
85, 7eqeq12d 2637 . 2  |-  ( y  =  k  ->  (
( G `  y
)  =  ( ( H `  y )  +  ( A  -  B ) )  <->  ( G `  k )  =  ( ( H `  k
)  +  ( A  -  B ) ) ) )
9 fveq2 6191 . . 3  |-  ( y  =  suc  k  -> 
( G `  y
)  =  ( G `
 suc  k )
)
10 fveq2 6191 . . . 4  |-  ( y  =  suc  k  -> 
( H `  y
)  =  ( H `
 suc  k )
)
1110oveq1d 6665 . . 3  |-  ( y  =  suc  k  -> 
( ( H `  y )  +  ( A  -  B ) )  =  ( ( H `  suc  k
)  +  ( A  -  B ) ) )
129, 11eqeq12d 2637 . 2  |-  ( y  =  suc  k  -> 
( ( G `  y )  =  ( ( H `  y
)  +  ( A  -  B ) )  <-> 
( G `  suc  k )  =  ( ( H `  suc  k )  +  ( A  -  B ) ) ) )
13 fveq2 6191 . . 3  |-  ( y  =  N  ->  ( G `  y )  =  ( G `  N ) )
14 fveq2 6191 . . . 4  |-  ( y  =  N  ->  ( H `  y )  =  ( H `  N ) )
1514oveq1d 6665 . . 3  |-  ( y  =  N  ->  (
( H `  y
)  +  ( A  -  B ) )  =  ( ( H `
 N )  +  ( A  -  B
) ) )
1613, 15eqeq12d 2637 . 2  |-  ( y  =  N  ->  (
( G `  y
)  =  ( ( H `  y )  +  ( A  -  B ) )  <->  ( G `  N )  =  ( ( H `  N
)  +  ( A  -  B ) ) ) )
17 uzrdgxfr.4 . . . . 5  |-  B  e.  ZZ
18 zcn 11382 . . . . 5  |-  ( B  e.  ZZ  ->  B  e.  CC )
1917, 18ax-mp 5 . . . 4  |-  B  e.  CC
20 uzrdgxfr.3 . . . . 5  |-  A  e.  ZZ
21 zcn 11382 . . . . 5  |-  ( A  e.  ZZ  ->  A  e.  CC )
2220, 21ax-mp 5 . . . 4  |-  A  e.  CC
2319, 22pncan3i 10358 . . 3  |-  ( B  +  ( A  -  B ) )  =  A
24 uzrdgxfr.2 . . . . 5  |-  H  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  B )  |`  om )
2517, 24om2uz0i 12746 . . . 4  |-  ( H `
 (/) )  =  B
2625oveq1i 6660 . . 3  |-  ( ( H `  (/) )  +  ( A  -  B
) )  =  ( B  +  ( A  -  B ) )
27 uzrdgxfr.1 . . . 4  |-  G  =  ( rec ( ( x  e.  _V  |->  ( x  +  1 ) ) ,  A )  |`  om )
2820, 27om2uz0i 12746 . . 3  |-  ( G `
 (/) )  =  A
2923, 26, 283eqtr4ri 2655 . 2  |-  ( G `
 (/) )  =  ( ( H `  (/) )  +  ( A  -  B
) )
30 oveq1 6657 . . 3  |-  ( ( G `  k )  =  ( ( H `
 k )  +  ( A  -  B
) )  ->  (
( G `  k
)  +  1 )  =  ( ( ( H `  k )  +  ( A  -  B ) )  +  1 ) )
3120, 27om2uzsuci 12747 . . . 4  |-  ( k  e.  om  ->  ( G `  suc  k )  =  ( ( G `
 k )  +  1 ) )
3217, 24om2uzsuci 12747 . . . . . 6  |-  ( k  e.  om  ->  ( H `  suc  k )  =  ( ( H `
 k )  +  1 ) )
3332oveq1d 6665 . . . . 5  |-  ( k  e.  om  ->  (
( H `  suc  k )  +  ( A  -  B ) )  =  ( ( ( H `  k
)  +  1 )  +  ( A  -  B ) ) )
3417, 24om2uzuzi 12748 . . . . . . . 8  |-  ( k  e.  om  ->  ( H `  k )  e.  ( ZZ>= `  B )
)
35 eluzelz 11697 . . . . . . . 8  |-  ( ( H `  k )  e.  ( ZZ>= `  B
)  ->  ( H `  k )  e.  ZZ )
3634, 35syl 17 . . . . . . 7  |-  ( k  e.  om  ->  ( H `  k )  e.  ZZ )
3736zcnd 11483 . . . . . 6  |-  ( k  e.  om  ->  ( H `  k )  e.  CC )
38 ax-1cn 9994 . . . . . . 7  |-  1  e.  CC
3922, 19subcli 10357 . . . . . . 7  |-  ( A  -  B )  e.  CC
40 add32 10254 . . . . . . 7  |-  ( ( ( H `  k
)  e.  CC  /\  1  e.  CC  /\  ( A  -  B )  e.  CC )  ->  (
( ( H `  k )  +  1 )  +  ( A  -  B ) )  =  ( ( ( H `  k )  +  ( A  -  B ) )  +  1 ) )
4138, 39, 40mp3an23 1416 . . . . . 6  |-  ( ( H `  k )  e.  CC  ->  (
( ( H `  k )  +  1 )  +  ( A  -  B ) )  =  ( ( ( H `  k )  +  ( A  -  B ) )  +  1 ) )
4237, 41syl 17 . . . . 5  |-  ( k  e.  om  ->  (
( ( H `  k )  +  1 )  +  ( A  -  B ) )  =  ( ( ( H `  k )  +  ( A  -  B ) )  +  1 ) )
4333, 42eqtrd 2656 . . . 4  |-  ( k  e.  om  ->  (
( H `  suc  k )  +  ( A  -  B ) )  =  ( ( ( H `  k
)  +  ( A  -  B ) )  +  1 ) )
4431, 43eqeq12d 2637 . . 3  |-  ( k  e.  om  ->  (
( G `  suc  k )  =  ( ( H `  suc  k )  +  ( A  -  B ) )  <->  ( ( G `
 k )  +  1 )  =  ( ( ( H `  k )  +  ( A  -  B ) )  +  1 ) ) )
4530, 44syl5ibr 236 . 2  |-  ( k  e.  om  ->  (
( G `  k
)  =  ( ( H `  k )  +  ( A  -  B ) )  -> 
( G `  suc  k )  =  ( ( H `  suc  k )  +  ( A  -  B ) ) ) )
464, 8, 12, 16, 29, 45finds 7092 1  |-  ( N  e.  om  ->  ( G `  N )  =  ( ( H `
 N )  +  ( A  -  B
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   _Vcvv 3200   (/)c0 3915    |-> cmpt 4729    |` cres 5116   suc csuc 5725   ` cfv 5888  (class class class)co 6650   omcom 7065   reccrdg 7505   CCcc 9934   1c1 9937    + caddc 9939    - cmin 10266   ZZcz 11377   ZZ>=cuz 11687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688
This theorem is referenced by:  fz1isolem  13245
  Copyright terms: Public domain W3C validator