Proof of Theorem volinun
| Step | Hyp | Ref
| Expression |
| 1 | | inundif 4046 |
. . . . 5
⊢ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) = 𝐴 |
| 2 | 1 | fveq2i 6194 |
. . . 4
⊢
(vol‘((𝐴 ∩
𝐵) ∪ (𝐴 ∖ 𝐵))) = (vol‘𝐴) |
| 3 | | inmbl 23310 |
. . . . . 6
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → (𝐴 ∩ 𝐵) ∈ dom vol) |
| 4 | 3 | adantr 481 |
. . . . 5
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧
((vol‘𝐴) ∈
ℝ ∧ (vol‘𝐵)
∈ ℝ)) → (𝐴
∩ 𝐵) ∈ dom
vol) |
| 5 | | difmbl 23311 |
. . . . . 6
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → (𝐴 ∖ 𝐵) ∈ dom vol) |
| 6 | 5 | adantr 481 |
. . . . 5
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧
((vol‘𝐴) ∈
ℝ ∧ (vol‘𝐵)
∈ ℝ)) → (𝐴
∖ 𝐵) ∈ dom
vol) |
| 7 | | indifcom 3872 |
. . . . . . 7
⊢ ((𝐴 ∩ 𝐵) ∩ (𝐴 ∖ 𝐵)) = (𝐴 ∩ ((𝐴 ∩ 𝐵) ∖ 𝐵)) |
| 8 | | difin0 4041 |
. . . . . . . . 9
⊢ ((𝐴 ∩ 𝐵) ∖ 𝐵) = ∅ |
| 9 | 8 | ineq2i 3811 |
. . . . . . . 8
⊢ (𝐴 ∩ ((𝐴 ∩ 𝐵) ∖ 𝐵)) = (𝐴 ∩ ∅) |
| 10 | | in0 3968 |
. . . . . . . 8
⊢ (𝐴 ∩ ∅) =
∅ |
| 11 | 9, 10 | eqtri 2644 |
. . . . . . 7
⊢ (𝐴 ∩ ((𝐴 ∩ 𝐵) ∖ 𝐵)) = ∅ |
| 12 | 7, 11 | eqtri 2644 |
. . . . . 6
⊢ ((𝐴 ∩ 𝐵) ∩ (𝐴 ∖ 𝐵)) = ∅ |
| 13 | 12 | a1i 11 |
. . . . 5
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧
((vol‘𝐴) ∈
ℝ ∧ (vol‘𝐵)
∈ ℝ)) → ((𝐴
∩ 𝐵) ∩ (𝐴 ∖ 𝐵)) = ∅) |
| 14 | | mblvol 23298 |
. . . . . . 7
⊢ ((𝐴 ∩ 𝐵) ∈ dom vol → (vol‘(𝐴 ∩ 𝐵)) = (vol*‘(𝐴 ∩ 𝐵))) |
| 15 | 4, 14 | syl 17 |
. . . . . 6
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧
((vol‘𝐴) ∈
ℝ ∧ (vol‘𝐵)
∈ ℝ)) → (vol‘(𝐴 ∩ 𝐵)) = (vol*‘(𝐴 ∩ 𝐵))) |
| 16 | | inss1 3833 |
. . . . . . . 8
⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 |
| 17 | 16 | a1i 11 |
. . . . . . 7
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧
((vol‘𝐴) ∈
ℝ ∧ (vol‘𝐵)
∈ ℝ)) → (𝐴
∩ 𝐵) ⊆ 𝐴) |
| 18 | | mblss 23299 |
. . . . . . . 8
⊢ (𝐴 ∈ dom vol → 𝐴 ⊆
ℝ) |
| 19 | 18 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧
((vol‘𝐴) ∈
ℝ ∧ (vol‘𝐵)
∈ ℝ)) → 𝐴
⊆ ℝ) |
| 20 | | mblvol 23298 |
. . . . . . . . 9
⊢ (𝐴 ∈ dom vol →
(vol‘𝐴) =
(vol*‘𝐴)) |
| 21 | 20 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧
((vol‘𝐴) ∈
ℝ ∧ (vol‘𝐵)
∈ ℝ)) → (vol‘𝐴) = (vol*‘𝐴)) |
| 22 | | simprl 794 |
. . . . . . . 8
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧
((vol‘𝐴) ∈
ℝ ∧ (vol‘𝐵)
∈ ℝ)) → (vol‘𝐴) ∈ ℝ) |
| 23 | 21, 22 | eqeltrrd 2702 |
. . . . . . 7
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧
((vol‘𝐴) ∈
ℝ ∧ (vol‘𝐵)
∈ ℝ)) → (vol*‘𝐴) ∈ ℝ) |
| 24 | | ovolsscl 23254 |
. . . . . . 7
⊢ (((𝐴 ∩ 𝐵) ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) →
(vol*‘(𝐴 ∩ 𝐵)) ∈
ℝ) |
| 25 | 17, 19, 23, 24 | syl3anc 1326 |
. . . . . 6
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧
((vol‘𝐴) ∈
ℝ ∧ (vol‘𝐵)
∈ ℝ)) → (vol*‘(𝐴 ∩ 𝐵)) ∈ ℝ) |
| 26 | 15, 25 | eqeltrd 2701 |
. . . . 5
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧
((vol‘𝐴) ∈
ℝ ∧ (vol‘𝐵)
∈ ℝ)) → (vol‘(𝐴 ∩ 𝐵)) ∈ ℝ) |
| 27 | | mblvol 23298 |
. . . . . . 7
⊢ ((𝐴 ∖ 𝐵) ∈ dom vol → (vol‘(𝐴 ∖ 𝐵)) = (vol*‘(𝐴 ∖ 𝐵))) |
| 28 | 6, 27 | syl 17 |
. . . . . 6
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧
((vol‘𝐴) ∈
ℝ ∧ (vol‘𝐵)
∈ ℝ)) → (vol‘(𝐴 ∖ 𝐵)) = (vol*‘(𝐴 ∖ 𝐵))) |
| 29 | | difssd 3738 |
. . . . . . 7
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧
((vol‘𝐴) ∈
ℝ ∧ (vol‘𝐵)
∈ ℝ)) → (𝐴
∖ 𝐵) ⊆ 𝐴) |
| 30 | | ovolsscl 23254 |
. . . . . . 7
⊢ (((𝐴 ∖ 𝐵) ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ∧ (vol*‘𝐴) ∈ ℝ) →
(vol*‘(𝐴 ∖
𝐵)) ∈
ℝ) |
| 31 | 29, 19, 23, 30 | syl3anc 1326 |
. . . . . 6
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧
((vol‘𝐴) ∈
ℝ ∧ (vol‘𝐵)
∈ ℝ)) → (vol*‘(𝐴 ∖ 𝐵)) ∈ ℝ) |
| 32 | 28, 31 | eqeltrd 2701 |
. . . . 5
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧
((vol‘𝐴) ∈
ℝ ∧ (vol‘𝐵)
∈ ℝ)) → (vol‘(𝐴 ∖ 𝐵)) ∈ ℝ) |
| 33 | | volun 23313 |
. . . . 5
⊢ ((((𝐴 ∩ 𝐵) ∈ dom vol ∧ (𝐴 ∖ 𝐵) ∈ dom vol ∧ ((𝐴 ∩ 𝐵) ∩ (𝐴 ∖ 𝐵)) = ∅) ∧ ((vol‘(𝐴 ∩ 𝐵)) ∈ ℝ ∧ (vol‘(𝐴 ∖ 𝐵)) ∈ ℝ)) →
(vol‘((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵))) = ((vol‘(𝐴 ∩ 𝐵)) + (vol‘(𝐴 ∖ 𝐵)))) |
| 34 | 4, 6, 13, 26, 32, 33 | syl32anc 1334 |
. . . 4
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧
((vol‘𝐴) ∈
ℝ ∧ (vol‘𝐵)
∈ ℝ)) → (vol‘((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵))) = ((vol‘(𝐴 ∩ 𝐵)) + (vol‘(𝐴 ∖ 𝐵)))) |
| 35 | 2, 34 | syl5eqr 2670 |
. . 3
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧
((vol‘𝐴) ∈
ℝ ∧ (vol‘𝐵)
∈ ℝ)) → (vol‘𝐴) = ((vol‘(𝐴 ∩ 𝐵)) + (vol‘(𝐴 ∖ 𝐵)))) |
| 36 | 35 | oveq1d 6665 |
. 2
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧
((vol‘𝐴) ∈
ℝ ∧ (vol‘𝐵)
∈ ℝ)) → ((vol‘𝐴) + (vol‘𝐵)) = (((vol‘(𝐴 ∩ 𝐵)) + (vol‘(𝐴 ∖ 𝐵))) + (vol‘𝐵))) |
| 37 | 26 | recnd 10068 |
. . 3
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧
((vol‘𝐴) ∈
ℝ ∧ (vol‘𝐵)
∈ ℝ)) → (vol‘(𝐴 ∩ 𝐵)) ∈ ℂ) |
| 38 | 32 | recnd 10068 |
. . 3
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧
((vol‘𝐴) ∈
ℝ ∧ (vol‘𝐵)
∈ ℝ)) → (vol‘(𝐴 ∖ 𝐵)) ∈ ℂ) |
| 39 | | simprr 796 |
. . . 4
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧
((vol‘𝐴) ∈
ℝ ∧ (vol‘𝐵)
∈ ℝ)) → (vol‘𝐵) ∈ ℝ) |
| 40 | 39 | recnd 10068 |
. . 3
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧
((vol‘𝐴) ∈
ℝ ∧ (vol‘𝐵)
∈ ℝ)) → (vol‘𝐵) ∈ ℂ) |
| 41 | 37, 38, 40 | addassd 10062 |
. 2
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧
((vol‘𝐴) ∈
ℝ ∧ (vol‘𝐵)
∈ ℝ)) → (((vol‘(𝐴 ∩ 𝐵)) + (vol‘(𝐴 ∖ 𝐵))) + (vol‘𝐵)) = ((vol‘(𝐴 ∩ 𝐵)) + ((vol‘(𝐴 ∖ 𝐵)) + (vol‘𝐵)))) |
| 42 | | undif1 4043 |
. . . . 5
⊢ ((𝐴 ∖ 𝐵) ∪ 𝐵) = (𝐴 ∪ 𝐵) |
| 43 | 42 | fveq2i 6194 |
. . . 4
⊢
(vol‘((𝐴
∖ 𝐵) ∪ 𝐵)) = (vol‘(𝐴 ∪ 𝐵)) |
| 44 | | simplr 792 |
. . . . 5
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧
((vol‘𝐴) ∈
ℝ ∧ (vol‘𝐵)
∈ ℝ)) → 𝐵
∈ dom vol) |
| 45 | | incom 3805 |
. . . . . . 7
⊢ ((𝐴 ∖ 𝐵) ∩ 𝐵) = (𝐵 ∩ (𝐴 ∖ 𝐵)) |
| 46 | | disjdif 4040 |
. . . . . . 7
⊢ (𝐵 ∩ (𝐴 ∖ 𝐵)) = ∅ |
| 47 | 45, 46 | eqtri 2644 |
. . . . . 6
⊢ ((𝐴 ∖ 𝐵) ∩ 𝐵) = ∅ |
| 48 | 47 | a1i 11 |
. . . . 5
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧
((vol‘𝐴) ∈
ℝ ∧ (vol‘𝐵)
∈ ℝ)) → ((𝐴
∖ 𝐵) ∩ 𝐵) = ∅) |
| 49 | | volun 23313 |
. . . . 5
⊢ ((((𝐴 ∖ 𝐵) ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ ((𝐴 ∖ 𝐵) ∩ 𝐵) = ∅) ∧ ((vol‘(𝐴 ∖ 𝐵)) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) →
(vol‘((𝐴 ∖
𝐵) ∪ 𝐵)) = ((vol‘(𝐴 ∖ 𝐵)) + (vol‘𝐵))) |
| 50 | 6, 44, 48, 32, 39, 49 | syl32anc 1334 |
. . . 4
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧
((vol‘𝐴) ∈
ℝ ∧ (vol‘𝐵)
∈ ℝ)) → (vol‘((𝐴 ∖ 𝐵) ∪ 𝐵)) = ((vol‘(𝐴 ∖ 𝐵)) + (vol‘𝐵))) |
| 51 | 43, 50 | syl5reqr 2671 |
. . 3
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧
((vol‘𝐴) ∈
ℝ ∧ (vol‘𝐵)
∈ ℝ)) → ((vol‘(𝐴 ∖ 𝐵)) + (vol‘𝐵)) = (vol‘(𝐴 ∪ 𝐵))) |
| 52 | 51 | oveq2d 6666 |
. 2
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧
((vol‘𝐴) ∈
ℝ ∧ (vol‘𝐵)
∈ ℝ)) → ((vol‘(𝐴 ∩ 𝐵)) + ((vol‘(𝐴 ∖ 𝐵)) + (vol‘𝐵))) = ((vol‘(𝐴 ∩ 𝐵)) + (vol‘(𝐴 ∪ 𝐵)))) |
| 53 | 36, 41, 52 | 3eqtrd 2660 |
1
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧
((vol‘𝐴) ∈
ℝ ∧ (vol‘𝐵)
∈ ℝ)) → ((vol‘𝐴) + (vol‘𝐵)) = ((vol‘(𝐴 ∩ 𝐵)) + (vol‘(𝐴 ∪ 𝐵)))) |