MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlksoneq1eq2 Structured version   Visualization version   GIF version

Theorem wlksoneq1eq2 26560
Description: Two walks with identical sequences of vertices start and end at the same vertices. (Contributed by AV, 14-May-2021.)
Assertion
Ref Expression
wlksoneq1eq2 ((𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐻(𝐶(WalksOn‘𝐺)𝐷)𝑃) → (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem wlksoneq1eq2
StepHypRef Expression
1 eqid 2622 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
21wlkonprop 26554 . 2 (𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃 → ((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)))
31wlkonprop 26554 . 2 (𝐻(𝐶(WalksOn‘𝐺)𝐷)𝑃 → ((𝐺 ∈ V ∧ 𝐶 ∈ (Vtx‘𝐺) ∧ 𝐷 ∈ (Vtx‘𝐺)) ∧ (𝐻 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐻(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐶 ∧ (𝑃‘(#‘𝐻)) = 𝐷)))
4 simp2 1062 . . . . . . . . . 10 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) → (𝑃‘0) = 𝐴)
54eqcomd 2628 . . . . . . . . 9 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) → 𝐴 = (𝑃‘0))
6 simp2 1062 . . . . . . . . 9 ((𝐻(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐶 ∧ (𝑃‘(#‘𝐻)) = 𝐷) → (𝑃‘0) = 𝐶)
75, 6sylan9eqr 2678 . . . . . . . 8 (((𝐻(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐶 ∧ (𝑃‘(#‘𝐻)) = 𝐷) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) → 𝐴 = 𝐶)
8 simp3 1063 . . . . . . . . . . 11 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) → (𝑃‘(#‘𝐹)) = 𝐵)
98eqcomd 2628 . . . . . . . . . 10 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) → 𝐵 = (𝑃‘(#‘𝐹)))
109adantl 482 . . . . . . . . 9 (((𝐻(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐶 ∧ (𝑃‘(#‘𝐻)) = 𝐷) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) → 𝐵 = (𝑃‘(#‘𝐹)))
11 wlklenvm1 26517 . . . . . . . . . . . 12 (𝐻(Walks‘𝐺)𝑃 → (#‘𝐻) = ((#‘𝑃) − 1))
12 wlklenvm1 26517 . . . . . . . . . . . . . . 15 (𝐹(Walks‘𝐺)𝑃 → (#‘𝐹) = ((#‘𝑃) − 1))
13 eqtr3 2643 . . . . . . . . . . . . . . . . 17 (((#‘𝐹) = ((#‘𝑃) − 1) ∧ (#‘𝐻) = ((#‘𝑃) − 1)) → (#‘𝐹) = (#‘𝐻))
1413fveq2d 6195 . . . . . . . . . . . . . . . 16 (((#‘𝐹) = ((#‘𝑃) − 1) ∧ (#‘𝐻) = ((#‘𝑃) − 1)) → (𝑃‘(#‘𝐹)) = (𝑃‘(#‘𝐻)))
1514ex 450 . . . . . . . . . . . . . . 15 ((#‘𝐹) = ((#‘𝑃) − 1) → ((#‘𝐻) = ((#‘𝑃) − 1) → (𝑃‘(#‘𝐹)) = (𝑃‘(#‘𝐻))))
1612, 15syl 17 . . . . . . . . . . . . . 14 (𝐹(Walks‘𝐺)𝑃 → ((#‘𝐻) = ((#‘𝑃) − 1) → (𝑃‘(#‘𝐹)) = (𝑃‘(#‘𝐻))))
17163ad2ant1 1082 . . . . . . . . . . . . 13 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) → ((#‘𝐻) = ((#‘𝑃) − 1) → (𝑃‘(#‘𝐹)) = (𝑃‘(#‘𝐻))))
1817com12 32 . . . . . . . . . . . 12 ((#‘𝐻) = ((#‘𝑃) − 1) → ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) → (𝑃‘(#‘𝐹)) = (𝑃‘(#‘𝐻))))
1911, 18syl 17 . . . . . . . . . . 11 (𝐻(Walks‘𝐺)𝑃 → ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) → (𝑃‘(#‘𝐹)) = (𝑃‘(#‘𝐻))))
20193ad2ant1 1082 . . . . . . . . . 10 ((𝐻(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐶 ∧ (𝑃‘(#‘𝐻)) = 𝐷) → ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) → (𝑃‘(#‘𝐹)) = (𝑃‘(#‘𝐻))))
2120imp 445 . . . . . . . . 9 (((𝐻(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐶 ∧ (𝑃‘(#‘𝐻)) = 𝐷) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) → (𝑃‘(#‘𝐹)) = (𝑃‘(#‘𝐻)))
22 simpl3 1066 . . . . . . . . 9 (((𝐻(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐶 ∧ (𝑃‘(#‘𝐻)) = 𝐷) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) → (𝑃‘(#‘𝐻)) = 𝐷)
2310, 21, 223eqtrd 2660 . . . . . . . 8 (((𝐻(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐶 ∧ (𝑃‘(#‘𝐻)) = 𝐷) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) → 𝐵 = 𝐷)
247, 23jca 554 . . . . . . 7 (((𝐻(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐶 ∧ (𝑃‘(#‘𝐻)) = 𝐷) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) → (𝐴 = 𝐶𝐵 = 𝐷))
2524ex 450 . . . . . 6 ((𝐻(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐶 ∧ (𝑃‘(#‘𝐻)) = 𝐷) → ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) → (𝐴 = 𝐶𝐵 = 𝐷)))
26253ad2ant3 1084 . . . . 5 (((𝐺 ∈ V ∧ 𝐶 ∈ (Vtx‘𝐺) ∧ 𝐷 ∈ (Vtx‘𝐺)) ∧ (𝐻 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐻(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐶 ∧ (𝑃‘(#‘𝐻)) = 𝐷)) → ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) → (𝐴 = 𝐶𝐵 = 𝐷)))
2726com12 32 . . . 4 ((𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵) → (((𝐺 ∈ V ∧ 𝐶 ∈ (Vtx‘𝐺) ∧ 𝐷 ∈ (Vtx‘𝐺)) ∧ (𝐻 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐻(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐶 ∧ (𝑃‘(#‘𝐻)) = 𝐷)) → (𝐴 = 𝐶𝐵 = 𝐷)))
28273ad2ant3 1084 . . 3 (((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) → (((𝐺 ∈ V ∧ 𝐶 ∈ (Vtx‘𝐺) ∧ 𝐷 ∈ (Vtx‘𝐺)) ∧ (𝐻 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐻(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐶 ∧ (𝑃‘(#‘𝐻)) = 𝐷)) → (𝐴 = 𝐶𝐵 = 𝐷)))
2928imp 445 . 2 ((((𝐺 ∈ V ∧ 𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐹(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐴 ∧ (𝑃‘(#‘𝐹)) = 𝐵)) ∧ ((𝐺 ∈ V ∧ 𝐶 ∈ (Vtx‘𝐺) ∧ 𝐷 ∈ (Vtx‘𝐺)) ∧ (𝐻 ∈ V ∧ 𝑃 ∈ V) ∧ (𝐻(Walks‘𝐺)𝑃 ∧ (𝑃‘0) = 𝐶 ∧ (𝑃‘(#‘𝐻)) = 𝐷))) → (𝐴 = 𝐶𝐵 = 𝐷))
302, 3, 29syl2an 494 1 ((𝐹(𝐴(WalksOn‘𝐺)𝐵)𝑃𝐻(𝐶(WalksOn‘𝐺)𝐷)𝑃) → (𝐴 = 𝐶𝐵 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200   class class class wbr 4653  cfv 5888  (class class class)co 6650  0cc0 9936  1c1 9937  cmin 10266  #chash 13117  Vtxcvtx 25874  Walkscwlks 26492  WalksOncwlkson 26493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-wlks 26495  df-wlkson 26496
This theorem is referenced by:  wspthneq1eq2  26745
  Copyright terms: Public domain W3C validator