Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimmnfmpt Structured version   Visualization version   GIF version

Theorem xlimmnfmpt 40069
Description: A function converges to plus infinity if it eventually becomes (and stays) larger than any given real number. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
xlimmnfmpt.k 𝑘𝜑
xlimmnfmpt.m (𝜑𝑀 ∈ ℤ)
xlimmnfmpt.z 𝑍 = (ℤ𝑀)
xlimmnfmpt.b ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ*)
xlimmnfmpt.f 𝐹 = (𝑘𝑍𝐵)
Assertion
Ref Expression
xlimmnfmpt (𝜑 → (𝐹~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝐵𝑥))
Distinct variable groups:   𝑥,𝑘   𝐵,𝑗,𝑥   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑗,𝑘)   𝐵(𝑘)   𝐹(𝑥,𝑗,𝑘)   𝑀(𝑥,𝑗,𝑘)

Proof of Theorem xlimmnfmpt
Dummy variables 𝑖 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xlimmnfmpt.f . . . 4 𝐹 = (𝑘𝑍𝐵)
2 nfmpt1 4747 . . . 4 𝑘(𝑘𝑍𝐵)
31, 2nfcxfr 2762 . . 3 𝑘𝐹
4 xlimmnfmpt.m . . 3 (𝜑𝑀 ∈ ℤ)
5 xlimmnfmpt.z . . 3 𝑍 = (ℤ𝑀)
6 xlimmnfmpt.k . . . 4 𝑘𝜑
7 xlimmnfmpt.b . . . 4 ((𝜑𝑘𝑍) → 𝐵 ∈ ℝ*)
86, 7, 1fmptdf 6387 . . 3 (𝜑𝐹:𝑍⟶ℝ*)
93, 4, 5, 8xlimmnf 40067 . 2 (𝜑 → (𝐹~~>*-∞ ↔ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)(𝐹𝑘) ≤ 𝑦))
10 nfv 1843 . . . . . 6 𝑘 𝑖𝑍
116, 10nfan 1828 . . . . 5 𝑘(𝜑𝑖𝑍)
125uztrn2 11705 . . . . . . . 8 ((𝑖𝑍𝑘 ∈ (ℤ𝑖)) → 𝑘𝑍)
1312adantll 750 . . . . . . 7 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → 𝑘𝑍)
14 simpll 790 . . . . . . . 8 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → 𝜑)
1514, 13, 7syl2anc 693 . . . . . . 7 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → 𝐵 ∈ ℝ*)
161fvmpt2 6291 . . . . . . 7 ((𝑘𝑍𝐵 ∈ ℝ*) → (𝐹𝑘) = 𝐵)
1713, 15, 16syl2anc 693 . . . . . 6 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → (𝐹𝑘) = 𝐵)
1817breq1d 4663 . . . . 5 (((𝜑𝑖𝑍) ∧ 𝑘 ∈ (ℤ𝑖)) → ((𝐹𝑘) ≤ 𝑦𝐵𝑦))
1911, 18ralbida 2982 . . . 4 ((𝜑𝑖𝑍) → (∀𝑘 ∈ (ℤ𝑖)(𝐹𝑘) ≤ 𝑦 ↔ ∀𝑘 ∈ (ℤ𝑖)𝐵𝑦))
2019rexbidva 3049 . . 3 (𝜑 → (∃𝑖𝑍𝑘 ∈ (ℤ𝑖)(𝐹𝑘) ≤ 𝑦 ↔ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝐵𝑦))
2120ralbidv 2986 . 2 (𝜑 → (∀𝑦 ∈ ℝ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)(𝐹𝑘) ≤ 𝑦 ↔ ∀𝑦 ∈ ℝ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝐵𝑦))
22 breq2 4657 . . . . . 6 (𝑦 = 𝑥 → (𝐵𝑦𝐵𝑥))
2322rexralbidv 3058 . . . . 5 (𝑦 = 𝑥 → (∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝐵𝑦 ↔ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝐵𝑥))
24 fveq2 6191 . . . . . . 7 (𝑖 = 𝑗 → (ℤ𝑖) = (ℤ𝑗))
2524raleqdv 3144 . . . . . 6 (𝑖 = 𝑗 → (∀𝑘 ∈ (ℤ𝑖)𝐵𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)𝐵𝑥))
2625cbvrexv 3172 . . . . 5 (∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝐵𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝐵𝑥)
2723, 26syl6bb 276 . . . 4 (𝑦 = 𝑥 → (∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝐵𝑦 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝐵𝑥))
2827cbvralv 3171 . . 3 (∀𝑦 ∈ ℝ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝐵𝑦 ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝐵𝑥)
2928a1i 11 . 2 (𝜑 → (∀𝑦 ∈ ℝ ∃𝑖𝑍𝑘 ∈ (ℤ𝑖)𝐵𝑦 ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝐵𝑥))
309, 21, 293bitrd 294 1 (𝜑 → (𝐹~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝐵𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wnf 1708  wcel 1990  wral 2912  wrex 2913   class class class wbr 4653  cmpt 4729  cfv 5888  cr 9935  -∞cmnf 10072  *cxr 10073  cle 10075  cz 11377  cuz 11687  ~~>*clsxlim 40044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-z 11378  df-uz 11688  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-topgen 16104  df-ordt 16161  df-ps 17200  df-tsr 17201  df-top 20699  df-topon 20716  df-bases 20750  df-lm 21033  df-xlim 40045
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator