![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > znnenlem | Structured version Visualization version GIF version |
Description: Lemma for znnen 14941. (Contributed by NM, 31-Jul-2004.) |
Ref | Expression |
---|---|
znnenlem | ⊢ (((0 ≤ 𝑥 ∧ ¬ 0 ≤ 𝑦) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 = 𝑦 ↔ (2 · 𝑥) = ((-2 · 𝑦) + 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 11381 | . . . . 5 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℝ) | |
2 | zre 11381 | . . . . 5 ⊢ (𝑦 ∈ ℤ → 𝑦 ∈ ℝ) | |
3 | 0re 10040 | . . . . . . . . . . . 12 ⊢ 0 ∈ ℝ | |
4 | ltnle 10117 | . . . . . . . . . . . 12 ⊢ ((𝑦 ∈ ℝ ∧ 0 ∈ ℝ) → (𝑦 < 0 ↔ ¬ 0 ≤ 𝑦)) | |
5 | 3, 4 | mpan2 707 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ ℝ → (𝑦 < 0 ↔ ¬ 0 ≤ 𝑦)) |
6 | 5 | adantr 481 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦 < 0 ↔ ¬ 0 ≤ 𝑦)) |
7 | 6 | anbi1d 741 | . . . . . . . . 9 ⊢ ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦 < 0 ∧ 0 ≤ 𝑥) ↔ (¬ 0 ≤ 𝑦 ∧ 0 ≤ 𝑥))) |
8 | ltletr 10129 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ ℝ ∧ 0 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦 < 0 ∧ 0 ≤ 𝑥) → 𝑦 < 𝑥)) | |
9 | 3, 8 | mp3an2 1412 | . . . . . . . . 9 ⊢ ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦 < 0 ∧ 0 ≤ 𝑥) → 𝑦 < 𝑥)) |
10 | 7, 9 | sylbird 250 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((¬ 0 ≤ 𝑦 ∧ 0 ≤ 𝑥) → 𝑦 < 𝑥)) |
11 | 10 | ancoms 469 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((¬ 0 ≤ 𝑦 ∧ 0 ≤ 𝑥) → 𝑦 < 𝑥)) |
12 | 11 | ancomsd 470 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((0 ≤ 𝑥 ∧ ¬ 0 ≤ 𝑦) → 𝑦 < 𝑥)) |
13 | ltne 10134 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℝ ∧ 𝑦 < 𝑥) → 𝑥 ≠ 𝑦) | |
14 | 13 | ex 450 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ → (𝑦 < 𝑥 → 𝑥 ≠ 𝑦)) |
15 | 14 | adantl 482 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑦 < 𝑥 → 𝑥 ≠ 𝑦)) |
16 | 12, 15 | syld 47 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((0 ≤ 𝑥 ∧ ¬ 0 ≤ 𝑦) → 𝑥 ≠ 𝑦)) |
17 | 1, 2, 16 | syl2an 494 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((0 ≤ 𝑥 ∧ ¬ 0 ≤ 𝑦) → 𝑥 ≠ 𝑦)) |
18 | 17 | impcom 446 | . . 3 ⊢ (((0 ≤ 𝑥 ∧ ¬ 0 ≤ 𝑦) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ≠ 𝑦) |
19 | znegcl 11412 | . . . . . 6 ⊢ (𝑦 ∈ ℤ → -𝑦 ∈ ℤ) | |
20 | zneo 11460 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ -𝑦 ∈ ℤ) → (2 · 𝑥) ≠ ((2 · -𝑦) + 1)) | |
21 | 19, 20 | sylan2 491 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (2 · 𝑥) ≠ ((2 · -𝑦) + 1)) |
22 | 2cn 11091 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
23 | zcn 11382 | . . . . . . . 8 ⊢ (𝑦 ∈ ℤ → 𝑦 ∈ ℂ) | |
24 | mulneg12 10468 | . . . . . . . 8 ⊢ ((2 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (-2 · 𝑦) = (2 · -𝑦)) | |
25 | 22, 23, 24 | sylancr 695 | . . . . . . 7 ⊢ (𝑦 ∈ ℤ → (-2 · 𝑦) = (2 · -𝑦)) |
26 | 25 | adantl 482 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (-2 · 𝑦) = (2 · -𝑦)) |
27 | 26 | oveq1d 6665 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((-2 · 𝑦) + 1) = ((2 · -𝑦) + 1)) |
28 | 21, 27 | neeqtrrd 2868 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (2 · 𝑥) ≠ ((-2 · 𝑦) + 1)) |
29 | 28 | adantl 482 | . . 3 ⊢ (((0 ≤ 𝑥 ∧ ¬ 0 ≤ 𝑦) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (2 · 𝑥) ≠ ((-2 · 𝑦) + 1)) |
30 | 18, 29 | 2thd 255 | . 2 ⊢ (((0 ≤ 𝑥 ∧ ¬ 0 ≤ 𝑦) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 ≠ 𝑦 ↔ (2 · 𝑥) ≠ ((-2 · 𝑦) + 1))) |
31 | 30 | necon4bid 2839 | 1 ⊢ (((0 ≤ 𝑥 ∧ ¬ 0 ≤ 𝑦) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 = 𝑦 ↔ (2 · 𝑥) = ((-2 · 𝑦) + 1))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 class class class wbr 4653 (class class class)co 6650 ℂcc 9934 ℝcr 9935 0cc0 9936 1c1 9937 + caddc 9939 · cmul 9941 < clt 10074 ≤ cle 10075 -cneg 10267 2c2 11070 ℤcz 11377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-n0 11293 df-z 11378 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |