Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
ncr53c8xx.c
Go to the documentation of this file.
1 /******************************************************************************
2 ** Device driver for the PCI-SCSI NCR538XX controller family.
3 **
4 ** Copyright (C) 1994 Wolfgang Stanglmeier
5 **
6 ** This program is free software; you can redistribute it and/or modify
7 ** it under the terms of the GNU General Public License as published by
8 ** the Free Software Foundation; either version 2 of the License, or
9 ** (at your option) any later version.
10 **
11 ** This program is distributed in the hope that it will be useful,
12 ** but WITHOUT ANY WARRANTY; without even the implied warranty of
13 ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 ** GNU General Public License for more details.
15 **
16 ** You should have received a copy of the GNU General Public License
17 ** along with this program; if not, write to the Free Software
18 ** Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 **
20 **-----------------------------------------------------------------------------
21 **
22 ** This driver has been ported to Linux from the FreeBSD NCR53C8XX driver
23 ** and is currently maintained by
24 **
25 ** Gerard Roudier <[email protected]>
26 **
27 ** Being given that this driver originates from the FreeBSD version, and
28 ** in order to keep synergy on both, any suggested enhancements and corrections
29 ** received on Linux are automatically a potential candidate for the FreeBSD
30 ** version.
31 **
32 ** The original driver has been written for 386bsd and FreeBSD by
33 ** Wolfgang Stanglmeier <[email protected]>
34 ** Stefan Esser <[email protected]>
35 **
36 ** And has been ported to NetBSD by
37 ** Charles M. Hannum <[email protected]>
38 **
39 **-----------------------------------------------------------------------------
40 **
41 ** Brief history
42 **
43 ** December 10 1995 by Gerard Roudier:
44 ** Initial port to Linux.
45 **
46 ** June 23 1996 by Gerard Roudier:
47 ** Support for 64 bits architectures (Alpha).
48 **
49 ** November 30 1996 by Gerard Roudier:
50 ** Support for Fast-20 scsi.
51 ** Support for large DMA fifo and 128 dwords bursting.
52 **
53 ** February 27 1997 by Gerard Roudier:
54 ** Support for Fast-40 scsi.
55 ** Support for on-Board RAM.
56 **
57 ** May 3 1997 by Gerard Roudier:
58 ** Full support for scsi scripts instructions pre-fetching.
59 **
60 ** May 19 1997 by Richard Waltham <[email protected]>:
61 ** Support for NvRAM detection and reading.
62 **
63 ** August 18 1997 by Cort <[email protected]>:
64 ** Support for Power/PC (Big Endian).
65 **
66 ** June 20 1998 by Gerard Roudier
67 ** Support for up to 64 tags per lun.
68 ** O(1) everywhere (C and SCRIPTS) for normal cases.
69 ** Low PCI traffic for command handling when on-chip RAM is present.
70 ** Aggressive SCSI SCRIPTS optimizations.
71 **
72 ** 2005 by Matthew Wilcox and James Bottomley
73 ** PCI-ectomy. This driver now supports only the 720 chip (see the
74 ** NCR_Q720 and zalon drivers for the bus probe logic).
75 **
76 *******************************************************************************
77 */
78 
79 /*
80 ** Supported SCSI-II features:
81 ** Synchronous negotiation
82 ** Wide negotiation (depends on the NCR Chip)
83 ** Enable disconnection
84 ** Tagged command queuing
85 ** Parity checking
86 ** Etc...
87 **
88 ** Supported NCR/SYMBIOS chips:
89 ** 53C720 (Wide, Fast SCSI-2, intfly problems)
90 */
91 
92 /* Name and version of the driver */
93 #define SCSI_NCR_DRIVER_NAME "ncr53c8xx-3.4.3g"
94 
95 #define SCSI_NCR_DEBUG_FLAGS (0)
96 
97 #include <linux/blkdev.h>
98 #include <linux/delay.h>
99 #include <linux/dma-mapping.h>
100 #include <linux/errno.h>
101 #include <linux/gfp.h>
102 #include <linux/init.h>
103 #include <linux/interrupt.h>
104 #include <linux/ioport.h>
105 #include <linux/mm.h>
106 #include <linux/module.h>
107 #include <linux/sched.h>
108 #include <linux/signal.h>
109 #include <linux/spinlock.h>
110 #include <linux/stat.h>
111 #include <linux/string.h>
112 #include <linux/time.h>
113 #include <linux/timer.h>
114 #include <linux/types.h>
115 
116 #include <asm/dma.h>
117 #include <asm/io.h>
118 
119 #include <scsi/scsi.h>
120 #include <scsi/scsi_cmnd.h>
121 #include <scsi/scsi_dbg.h>
122 #include <scsi/scsi_device.h>
123 #include <scsi/scsi_tcq.h>
124 #include <scsi/scsi_transport.h>
125 #include <scsi/scsi_transport_spi.h>
126 
127 #include "ncr53c8xx.h"
128 
129 #define NAME53C8XX "ncr53c8xx"
130 
131 /*==========================================================
132 **
133 ** Debugging tags
134 **
135 **==========================================================
136 */
137 
138 #define DEBUG_ALLOC (0x0001)
139 #define DEBUG_PHASE (0x0002)
140 #define DEBUG_QUEUE (0x0008)
141 #define DEBUG_RESULT (0x0010)
142 #define DEBUG_POINTER (0x0020)
143 #define DEBUG_SCRIPT (0x0040)
144 #define DEBUG_TINY (0x0080)
145 #define DEBUG_TIMING (0x0100)
146 #define DEBUG_NEGO (0x0200)
147 #define DEBUG_TAGS (0x0400)
148 #define DEBUG_SCATTER (0x0800)
149 #define DEBUG_IC (0x1000)
150 
151 /*
152 ** Enable/Disable debug messages.
153 ** Can be changed at runtime too.
154 */
155 
156 #ifdef SCSI_NCR_DEBUG_INFO_SUPPORT
157 static int ncr_debug = SCSI_NCR_DEBUG_FLAGS;
158  #define DEBUG_FLAGS ncr_debug
159 #else
160  #define DEBUG_FLAGS SCSI_NCR_DEBUG_FLAGS
161 #endif
162 
163 static inline struct list_head *ncr_list_pop(struct list_head *head)
164 {
165  if (!list_empty(head)) {
166  struct list_head *elem = head->next;
167 
168  list_del(elem);
169  return elem;
170  }
171 
172  return NULL;
173 }
174 
175 /*==========================================================
176 **
177 ** Simple power of two buddy-like allocator.
178 **
179 ** This simple code is not intended to be fast, but to
180 ** provide power of 2 aligned memory allocations.
181 ** Since the SCRIPTS processor only supplies 8 bit
182 ** arithmetic, this allocator allows simple and fast
183 ** address calculations from the SCRIPTS code.
184 ** In addition, cache line alignment is guaranteed for
185 ** power of 2 cache line size.
186 ** Enhanced in linux-2.3.44 to provide a memory pool
187 ** per pcidev to support dynamic dma mapping. (I would
188 ** have preferred a real bus abstraction, btw).
189 **
190 **==========================================================
191 */
192 
193 #define MEMO_SHIFT 4 /* 16 bytes minimum memory chunk */
194 #if PAGE_SIZE >= 8192
195 #define MEMO_PAGE_ORDER 0 /* 1 PAGE maximum */
196 #else
197 #define MEMO_PAGE_ORDER 1 /* 2 PAGES maximum */
198 #endif
199 #define MEMO_FREE_UNUSED /* Free unused pages immediately */
200 #define MEMO_WARN 1
201 #define MEMO_GFP_FLAGS GFP_ATOMIC
202 #define MEMO_CLUSTER_SHIFT (PAGE_SHIFT+MEMO_PAGE_ORDER)
203 #define MEMO_CLUSTER_SIZE (1UL << MEMO_CLUSTER_SHIFT)
204 #define MEMO_CLUSTER_MASK (MEMO_CLUSTER_SIZE-1)
205 
206 typedef u_long m_addr_t; /* Enough bits to bit-hack addresses */
207 typedef struct device *m_bush_t; /* Something that addresses DMAable */
208 
209 typedef struct m_link { /* Link between free memory chunks */
210  struct m_link *next;
211 } m_link_s;
212 
213 typedef struct m_vtob { /* Virtual to Bus address translation */
214  struct m_vtob *next;
217 } m_vtob_s;
218 #define VTOB_HASH_SHIFT 5
219 #define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT)
220 #define VTOB_HASH_MASK (VTOB_HASH_SIZE-1)
221 #define VTOB_HASH_CODE(m) \
222  ((((m_addr_t) (m)) >> MEMO_CLUSTER_SHIFT) & VTOB_HASH_MASK)
223 
224 typedef struct m_pool { /* Memory pool of a given kind */
225  m_bush_t bush;
226  m_addr_t (*getp)(struct m_pool *);
227  void (*freep)(struct m_pool *, m_addr_t);
228  int nump;
230  struct m_pool *next;
232 } m_pool_s;
233 
234 static void *___m_alloc(m_pool_s *mp, int size)
235 {
236  int i = 0;
237  int s = (1 << MEMO_SHIFT);
238  int j;
239  m_addr_t a;
240  m_link_s *h = mp->h;
241 
242  if (size > (PAGE_SIZE << MEMO_PAGE_ORDER))
243  return NULL;
244 
245  while (size > s) {
246  s <<= 1;
247  ++i;
248  }
249 
250  j = i;
251  while (!h[j].next) {
252  if (s == (PAGE_SIZE << MEMO_PAGE_ORDER)) {
253  h[j].next = (m_link_s *)mp->getp(mp);
254  if (h[j].next)
255  h[j].next->next = NULL;
256  break;
257  }
258  ++j;
259  s <<= 1;
260  }
261  a = (m_addr_t) h[j].next;
262  if (a) {
263  h[j].next = h[j].next->next;
264  while (j > i) {
265  j -= 1;
266  s >>= 1;
267  h[j].next = (m_link_s *) (a+s);
268  h[j].next->next = NULL;
269  }
270  }
271 #ifdef DEBUG
272  printk("___m_alloc(%d) = %p\n", size, (void *) a);
273 #endif
274  return (void *) a;
275 }
276 
277 static void ___m_free(m_pool_s *mp, void *ptr, int size)
278 {
279  int i = 0;
280  int s = (1 << MEMO_SHIFT);
281  m_link_s *q;
282  m_addr_t a, b;
283  m_link_s *h = mp->h;
284 
285 #ifdef DEBUG
286  printk("___m_free(%p, %d)\n", ptr, size);
287 #endif
288 
289  if (size > (PAGE_SIZE << MEMO_PAGE_ORDER))
290  return;
291 
292  while (size > s) {
293  s <<= 1;
294  ++i;
295  }
296 
297  a = (m_addr_t) ptr;
298 
299  while (1) {
300 #ifdef MEMO_FREE_UNUSED
301  if (s == (PAGE_SIZE << MEMO_PAGE_ORDER)) {
302  mp->freep(mp, a);
303  break;
304  }
305 #endif
306  b = a ^ s;
307  q = &h[i];
308  while (q->next && q->next != (m_link_s *) b) {
309  q = q->next;
310  }
311  if (!q->next) {
312  ((m_link_s *) a)->next = h[i].next;
313  h[i].next = (m_link_s *) a;
314  break;
315  }
316  q->next = q->next->next;
317  a = a & b;
318  s <<= 1;
319  ++i;
320  }
321 }
322 
323 static DEFINE_SPINLOCK(ncr53c8xx_lock);
324 
325 static void *__m_calloc2(m_pool_s *mp, int size, char *name, int uflags)
326 {
327  void *p;
328 
329  p = ___m_alloc(mp, size);
330 
331  if (DEBUG_FLAGS & DEBUG_ALLOC)
332  printk ("new %-10s[%4d] @%p.\n", name, size, p);
333 
334  if (p)
335  memset(p, 0, size);
336  else if (uflags & MEMO_WARN)
337  printk (NAME53C8XX ": failed to allocate %s[%d]\n", name, size);
338 
339  return p;
340 }
341 
342 #define __m_calloc(mp, s, n) __m_calloc2(mp, s, n, MEMO_WARN)
343 
344 static void __m_free(m_pool_s *mp, void *ptr, int size, char *name)
345 {
346  if (DEBUG_FLAGS & DEBUG_ALLOC)
347  printk ("freeing %-10s[%4d] @%p.\n", name, size, ptr);
348 
349  ___m_free(mp, ptr, size);
350 
351 }
352 
353 /*
354  * With pci bus iommu support, we use a default pool of unmapped memory
355  * for memory we donnot need to DMA from/to and one pool per pcidev for
356  * memory accessed by the PCI chip. `mp0' is the default not DMAable pool.
357  */
358 
359 static m_addr_t ___mp0_getp(m_pool_s *mp)
360 {
362  if (m)
363  ++mp->nump;
364  return m;
365 }
366 
367 static void ___mp0_freep(m_pool_s *mp, m_addr_t m)
368 {
370  --mp->nump;
371 }
372 
373 static m_pool_s mp0 = {NULL, ___mp0_getp, ___mp0_freep};
374 
375 /*
376  * DMAable pools.
377  */
378 
379 /*
380  * With pci bus iommu support, we maintain one pool per pcidev and a
381  * hashed reverse table for virtual to bus physical address translations.
382  */
383 static m_addr_t ___dma_getp(m_pool_s *mp)
384 {
385  m_addr_t vp;
386  m_vtob_s *vbp;
387 
388  vbp = __m_calloc(&mp0, sizeof(*vbp), "VTOB");
389  if (vbp) {
391  vp = (m_addr_t) dma_alloc_coherent(mp->bush,
393  &daddr, GFP_ATOMIC);
394  if (vp) {
395  int hc = VTOB_HASH_CODE(vp);
396  vbp->vaddr = vp;
397  vbp->baddr = daddr;
398  vbp->next = mp->vtob[hc];
399  mp->vtob[hc] = vbp;
400  ++mp->nump;
401  return vp;
402  }
403  }
404  if (vbp)
405  __m_free(&mp0, vbp, sizeof(*vbp), "VTOB");
406  return 0;
407 }
408 
409 static void ___dma_freep(m_pool_s *mp, m_addr_t m)
410 {
411  m_vtob_s **vbpp, *vbp;
412  int hc = VTOB_HASH_CODE(m);
413 
414  vbpp = &mp->vtob[hc];
415  while (*vbpp && (*vbpp)->vaddr != m)
416  vbpp = &(*vbpp)->next;
417  if (*vbpp) {
418  vbp = *vbpp;
419  *vbpp = (*vbpp)->next;
421  (void *)vbp->vaddr, (dma_addr_t)vbp->baddr);
422  __m_free(&mp0, vbp, sizeof(*vbp), "VTOB");
423  --mp->nump;
424  }
425 }
426 
427 static inline m_pool_s *___get_dma_pool(m_bush_t bush)
428 {
429  m_pool_s *mp;
430  for (mp = mp0.next; mp && mp->bush != bush; mp = mp->next);
431  return mp;
432 }
433 
434 static m_pool_s *___cre_dma_pool(m_bush_t bush)
435 {
436  m_pool_s *mp;
437  mp = __m_calloc(&mp0, sizeof(*mp), "MPOOL");
438  if (mp) {
439  memset(mp, 0, sizeof(*mp));
440  mp->bush = bush;
441  mp->getp = ___dma_getp;
442  mp->freep = ___dma_freep;
443  mp->next = mp0.next;
444  mp0.next = mp;
445  }
446  return mp;
447 }
448 
449 static void ___del_dma_pool(m_pool_s *p)
450 {
451  struct m_pool **pp = &mp0.next;
452 
453  while (*pp && *pp != p)
454  pp = &(*pp)->next;
455  if (*pp) {
456  *pp = (*pp)->next;
457  __m_free(&mp0, p, sizeof(*p), "MPOOL");
458  }
459 }
460 
461 static void *__m_calloc_dma(m_bush_t bush, int size, char *name)
462 {
463  u_long flags;
464  struct m_pool *mp;
465  void *m = NULL;
466 
467  spin_lock_irqsave(&ncr53c8xx_lock, flags);
468  mp = ___get_dma_pool(bush);
469  if (!mp)
470  mp = ___cre_dma_pool(bush);
471  if (mp)
472  m = __m_calloc(mp, size, name);
473  if (mp && !mp->nump)
474  ___del_dma_pool(mp);
475  spin_unlock_irqrestore(&ncr53c8xx_lock, flags);
476 
477  return m;
478 }
479 
480 static void __m_free_dma(m_bush_t bush, void *m, int size, char *name)
481 {
482  u_long flags;
483  struct m_pool *mp;
484 
485  spin_lock_irqsave(&ncr53c8xx_lock, flags);
486  mp = ___get_dma_pool(bush);
487  if (mp)
488  __m_free(mp, m, size, name);
489  if (mp && !mp->nump)
490  ___del_dma_pool(mp);
491  spin_unlock_irqrestore(&ncr53c8xx_lock, flags);
492 }
493 
494 static m_addr_t __vtobus(m_bush_t bush, void *m)
495 {
496  u_long flags;
497  m_pool_s *mp;
498  int hc = VTOB_HASH_CODE(m);
499  m_vtob_s *vp = NULL;
500  m_addr_t a = ((m_addr_t) m) & ~MEMO_CLUSTER_MASK;
501 
502  spin_lock_irqsave(&ncr53c8xx_lock, flags);
503  mp = ___get_dma_pool(bush);
504  if (mp) {
505  vp = mp->vtob[hc];
506  while (vp && (m_addr_t) vp->vaddr != a)
507  vp = vp->next;
508  }
509  spin_unlock_irqrestore(&ncr53c8xx_lock, flags);
510  return vp ? vp->baddr + (((m_addr_t) m) - a) : 0;
511 }
512 
513 #define _m_calloc_dma(np, s, n) __m_calloc_dma(np->dev, s, n)
514 #define _m_free_dma(np, p, s, n) __m_free_dma(np->dev, p, s, n)
515 #define m_calloc_dma(s, n) _m_calloc_dma(np, s, n)
516 #define m_free_dma(p, s, n) _m_free_dma(np, p, s, n)
517 #define _vtobus(np, p) __vtobus(np->dev, p)
518 #define vtobus(p) _vtobus(np, p)
519 
520 /*
521  * Deal with DMA mapping/unmapping.
522  */
523 
524 /* To keep track of the dma mapping (sg/single) that has been set */
525 #define __data_mapped SCp.phase
526 #define __data_mapping SCp.have_data_in
527 
528 static void __unmap_scsi_data(struct device *dev, struct scsi_cmnd *cmd)
529 {
530  switch(cmd->__data_mapped) {
531  case 2:
532  scsi_dma_unmap(cmd);
533  break;
534  }
535  cmd->__data_mapped = 0;
536 }
537 
538 static int __map_scsi_sg_data(struct device *dev, struct scsi_cmnd *cmd)
539 {
540  int use_sg;
541 
542  use_sg = scsi_dma_map(cmd);
543  if (!use_sg)
544  return 0;
545 
546  cmd->__data_mapped = 2;
547  cmd->__data_mapping = use_sg;
548 
549  return use_sg;
550 }
551 
552 #define unmap_scsi_data(np, cmd) __unmap_scsi_data(np->dev, cmd)
553 #define map_scsi_sg_data(np, cmd) __map_scsi_sg_data(np->dev, cmd)
554 
555 /*==========================================================
556 **
557 ** Driver setup.
558 **
559 ** This structure is initialized from linux config
560 ** options. It can be overridden at boot-up by the boot
561 ** command line.
562 **
563 **==========================================================
564 */
565 static struct ncr_driver_setup
566  driver_setup = SCSI_NCR_DRIVER_SETUP;
567 
568 #ifndef MODULE
569 #ifdef SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT
570 static struct ncr_driver_setup
571  driver_safe_setup __initdata = SCSI_NCR_DRIVER_SAFE_SETUP;
572 #endif
573 #endif /* !MODULE */
574 
575 #define initverbose (driver_setup.verbose)
576 #define bootverbose (np->verbose)
577 
578 
579 /*===================================================================
580 **
581 ** Driver setup from the boot command line
582 **
583 **===================================================================
584 */
585 
586 #ifdef MODULE
587 #define ARG_SEP ' '
588 #else
589 #define ARG_SEP ','
590 #endif
591 
592 #define OPT_TAGS 1
593 #define OPT_MASTER_PARITY 2
594 #define OPT_SCSI_PARITY 3
595 #define OPT_DISCONNECTION 4
596 #define OPT_SPECIAL_FEATURES 5
597 #define OPT_UNUSED_1 6
598 #define OPT_FORCE_SYNC_NEGO 7
599 #define OPT_REVERSE_PROBE 8
600 #define OPT_DEFAULT_SYNC 9
601 #define OPT_VERBOSE 10
602 #define OPT_DEBUG 11
603 #define OPT_BURST_MAX 12
604 #define OPT_LED_PIN 13
605 #define OPT_MAX_WIDE 14
606 #define OPT_SETTLE_DELAY 15
607 #define OPT_DIFF_SUPPORT 16
608 #define OPT_IRQM 17
609 #define OPT_PCI_FIX_UP 18
610 #define OPT_BUS_CHECK 19
611 #define OPT_OPTIMIZE 20
612 #define OPT_RECOVERY 21
613 #define OPT_SAFE_SETUP 22
614 #define OPT_USE_NVRAM 23
615 #define OPT_EXCLUDE 24
616 #define OPT_HOST_ID 25
617 
618 #ifdef SCSI_NCR_IARB_SUPPORT
619 #define OPT_IARB 26
620 #endif
621 
622 #ifdef MODULE
623 #define ARG_SEP ' '
624 #else
625 #define ARG_SEP ','
626 #endif
627 
628 #ifndef MODULE
629 static char setup_token[] __initdata =
630  "tags:" "mpar:"
631  "spar:" "disc:"
632  "specf:" "ultra:"
633  "fsn:" "revprob:"
634  "sync:" "verb:"
635  "debug:" "burst:"
636  "led:" "wide:"
637  "settle:" "diff:"
638  "irqm:" "pcifix:"
639  "buschk:" "optim:"
640  "recovery:"
641  "safe:" "nvram:"
642  "excl:" "hostid:"
643 #ifdef SCSI_NCR_IARB_SUPPORT
644  "iarb:"
645 #endif
646  ; /* DONNOT REMOVE THIS ';' */
647 
648 static int __init get_setup_token(char *p)
649 {
650  char *cur = setup_token;
651  char *pc;
652  int i = 0;
653 
654  while (cur != NULL && (pc = strchr(cur, ':')) != NULL) {
655  ++pc;
656  ++i;
657  if (!strncmp(p, cur, pc - cur))
658  return i;
659  cur = pc;
660  }
661  return 0;
662 }
663 
664 static int __init sym53c8xx__setup(char *str)
665 {
666 #ifdef SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT
667  char *cur = str;
668  char *pc, *pv;
669  int i, val, c;
670  int xi = 0;
671 
672  while (cur != NULL && (pc = strchr(cur, ':')) != NULL) {
673  char *pe;
674 
675  val = 0;
676  pv = pc;
677  c = *++pv;
678 
679  if (c == 'n')
680  val = 0;
681  else if (c == 'y')
682  val = 1;
683  else
684  val = (int) simple_strtoul(pv, &pe, 0);
685 
686  switch (get_setup_token(cur)) {
687  case OPT_TAGS:
688  driver_setup.default_tags = val;
689  if (pe && *pe == '/') {
690  i = 0;
691  while (*pe && *pe != ARG_SEP &&
692  i < sizeof(driver_setup.tag_ctrl)-1) {
693  driver_setup.tag_ctrl[i++] = *pe++;
694  }
695  driver_setup.tag_ctrl[i] = '\0';
696  }
697  break;
698  case OPT_MASTER_PARITY:
699  driver_setup.master_parity = val;
700  break;
701  case OPT_SCSI_PARITY:
702  driver_setup.scsi_parity = val;
703  break;
704  case OPT_DISCONNECTION:
705  driver_setup.disconnection = val;
706  break;
708  driver_setup.special_features = val;
709  break;
710  case OPT_FORCE_SYNC_NEGO:
711  driver_setup.force_sync_nego = val;
712  break;
713  case OPT_REVERSE_PROBE:
714  driver_setup.reverse_probe = val;
715  break;
716  case OPT_DEFAULT_SYNC:
717  driver_setup.default_sync = val;
718  break;
719  case OPT_VERBOSE:
720  driver_setup.verbose = val;
721  break;
722  case OPT_DEBUG:
723  driver_setup.debug = val;
724  break;
725  case OPT_BURST_MAX:
726  driver_setup.burst_max = val;
727  break;
728  case OPT_LED_PIN:
729  driver_setup.led_pin = val;
730  break;
731  case OPT_MAX_WIDE:
732  driver_setup.max_wide = val? 1:0;
733  break;
734  case OPT_SETTLE_DELAY:
735  driver_setup.settle_delay = val;
736  break;
737  case OPT_DIFF_SUPPORT:
738  driver_setup.diff_support = val;
739  break;
740  case OPT_IRQM:
741  driver_setup.irqm = val;
742  break;
743  case OPT_PCI_FIX_UP:
744  driver_setup.pci_fix_up = val;
745  break;
746  case OPT_BUS_CHECK:
747  driver_setup.bus_check = val;
748  break;
749  case OPT_OPTIMIZE:
750  driver_setup.optimize = val;
751  break;
752  case OPT_RECOVERY:
753  driver_setup.recovery = val;
754  break;
755  case OPT_USE_NVRAM:
756  driver_setup.use_nvram = val;
757  break;
758  case OPT_SAFE_SETUP:
759  memcpy(&driver_setup, &driver_safe_setup,
760  sizeof(driver_setup));
761  break;
762  case OPT_EXCLUDE:
763  if (xi < SCSI_NCR_MAX_EXCLUDES)
764  driver_setup.excludes[xi++] = val;
765  break;
766  case OPT_HOST_ID:
767  driver_setup.host_id = val;
768  break;
769 #ifdef SCSI_NCR_IARB_SUPPORT
770  case OPT_IARB:
771  driver_setup.iarb = val;
772  break;
773 #endif
774  default:
775  printk("sym53c8xx_setup: unexpected boot option '%.*s' ignored\n", (int)(pc-cur+1), cur);
776  break;
777  }
778 
779  if ((cur = strchr(cur, ARG_SEP)) != NULL)
780  ++cur;
781  }
782 #endif /* SCSI_NCR_BOOT_COMMAND_LINE_SUPPORT */
783  return 1;
784 }
785 #endif /* !MODULE */
786 
787 /*===================================================================
788 **
789 ** Get device queue depth from boot command line.
790 **
791 **===================================================================
792 */
793 #define DEF_DEPTH (driver_setup.default_tags)
794 #define ALL_TARGETS -2
795 #define NO_TARGET -1
796 #define ALL_LUNS -2
797 #define NO_LUN -1
798 
799 static int device_queue_depth(int unit, int target, int lun)
800 {
801  int c, h, t, u, v;
802  char *p = driver_setup.tag_ctrl;
803  char *ep;
804 
805  h = -1;
806  t = NO_TARGET;
807  u = NO_LUN;
808  while ((c = *p++) != 0) {
809  v = simple_strtoul(p, &ep, 0);
810  switch(c) {
811  case '/':
812  ++h;
813  t = ALL_TARGETS;
814  u = ALL_LUNS;
815  break;
816  case 't':
817  if (t != target)
818  t = (target == v) ? v : NO_TARGET;
819  u = ALL_LUNS;
820  break;
821  case 'u':
822  if (u != lun)
823  u = (lun == v) ? v : NO_LUN;
824  break;
825  case 'q':
826  if (h == unit &&
827  (t == ALL_TARGETS || t == target) &&
828  (u == ALL_LUNS || u == lun))
829  return v;
830  break;
831  case '-':
832  t = ALL_TARGETS;
833  u = ALL_LUNS;
834  break;
835  default:
836  break;
837  }
838  p = ep;
839  }
840  return DEF_DEPTH;
841 }
842 
843 
844 /*==========================================================
845 **
846 ** The CCB done queue uses an array of CCB virtual
847 ** addresses. Empty entries are flagged using the bogus
848 ** virtual address 0xffffffff.
849 **
850 ** Since PCI ensures that only aligned DWORDs are accessed
851 ** atomically, 64 bit little-endian architecture requires
852 ** to test the high order DWORD of the entry to determine
853 ** if it is empty or valid.
854 **
855 ** BTW, I will make things differently as soon as I will
856 ** have a better idea, but this is simple and should work.
857 **
858 **==========================================================
859 */
860 
861 #define SCSI_NCR_CCB_DONE_SUPPORT
862 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
863 
864 #define MAX_DONE 24
865 #define CCB_DONE_EMPTY 0xffffffffUL
866 
867 /* All 32 bit architectures */
868 #if BITS_PER_LONG == 32
869 #define CCB_DONE_VALID(cp) (((u_long) cp) != CCB_DONE_EMPTY)
870 
871 /* All > 32 bit (64 bit) architectures regardless endian-ness */
872 #else
873 #define CCB_DONE_VALID(cp) \
874  ((((u_long) cp) & 0xffffffff00000000ul) && \
875  (((u_long) cp) & 0xfffffffful) != CCB_DONE_EMPTY)
876 #endif
877 
878 #endif /* SCSI_NCR_CCB_DONE_SUPPORT */
879 
880 /*==========================================================
881 **
882 ** Configuration and Debugging
883 **
884 **==========================================================
885 */
886 
887 /*
888 ** SCSI address of this device.
889 ** The boot routines should have set it.
890 ** If not, use this.
891 */
892 
893 #ifndef SCSI_NCR_MYADDR
894 #define SCSI_NCR_MYADDR (7)
895 #endif
896 
897 /*
898 ** The maximum number of tags per logic unit.
899 ** Used only for disk devices that support tags.
900 */
901 
902 #ifndef SCSI_NCR_MAX_TAGS
903 #define SCSI_NCR_MAX_TAGS (8)
904 #endif
905 
906 /*
907 ** TAGS are actually limited to 64 tags/lun.
908 ** We need to deal with power of 2, for alignment constraints.
909 */
910 #if SCSI_NCR_MAX_TAGS > 64
911 #define MAX_TAGS (64)
912 #else
913 #define MAX_TAGS SCSI_NCR_MAX_TAGS
914 #endif
915 
916 #define NO_TAG (255)
917 
918 /*
919 ** Choose appropriate type for tag bitmap.
920 */
921 #if MAX_TAGS > 32
922 typedef u64 tagmap_t;
923 #else
924 typedef u32 tagmap_t;
925 #endif
926 
927 /*
928 ** Number of targets supported by the driver.
929 ** n permits target numbers 0..n-1.
930 ** Default is 16, meaning targets #0..#15.
931 ** #7 .. is myself.
932 */
933 
934 #ifdef SCSI_NCR_MAX_TARGET
935 #define MAX_TARGET (SCSI_NCR_MAX_TARGET)
936 #else
937 #define MAX_TARGET (16)
938 #endif
939 
940 /*
941 ** Number of logic units supported by the driver.
942 ** n enables logic unit numbers 0..n-1.
943 ** The common SCSI devices require only
944 ** one lun, so take 1 as the default.
945 */
946 
947 #ifdef SCSI_NCR_MAX_LUN
948 #define MAX_LUN SCSI_NCR_MAX_LUN
949 #else
950 #define MAX_LUN (1)
951 #endif
952 
953 /*
954 ** Asynchronous pre-scaler (ns). Shall be 40
955 */
956 
957 #ifndef SCSI_NCR_MIN_ASYNC
958 #define SCSI_NCR_MIN_ASYNC (40)
959 #endif
960 
961 /*
962 ** The maximum number of jobs scheduled for starting.
963 ** There should be one slot per target, and one slot
964 ** for each tag of each target in use.
965 ** The calculation below is actually quite silly ...
966 */
967 
968 #ifdef SCSI_NCR_CAN_QUEUE
969 #define MAX_START (SCSI_NCR_CAN_QUEUE + 4)
970 #else
971 #define MAX_START (MAX_TARGET + 7 * MAX_TAGS)
972 #endif
973 
974 /*
975 ** We limit the max number of pending IO to 250.
976 ** since we donnot want to allocate more than 1
977 ** PAGE for 'scripth'.
978 */
979 #if MAX_START > 250
980 #undef MAX_START
981 #define MAX_START 250
982 #endif
983 
984 /*
985 ** The maximum number of segments a transfer is split into.
986 ** We support up to 127 segments for both read and write.
987 ** The data scripts are broken into 2 sub-scripts.
988 ** 80 (MAX_SCATTERL) segments are moved from a sub-script
989 ** in on-chip RAM. This makes data transfers shorter than
990 ** 80k (assuming 1k fs) as fast as possible.
991 */
992 
993 #define MAX_SCATTER (SCSI_NCR_MAX_SCATTER)
994 
995 #if (MAX_SCATTER > 80)
996 #define MAX_SCATTERL 80
997 #define MAX_SCATTERH (MAX_SCATTER - MAX_SCATTERL)
998 #else
999 #define MAX_SCATTERL (MAX_SCATTER-1)
1000 #define MAX_SCATTERH 1
1001 #endif
1002 
1003 /*
1004 ** other
1005 */
1006 
1007 #define NCR_SNOOP_TIMEOUT (1000000)
1008 
1009 /*
1010 ** Other definitions
1011 */
1012 
1013 #define ScsiResult(host_code, scsi_code) (((host_code) << 16) + ((scsi_code) & 0x7f))
1014 
1015 #define initverbose (driver_setup.verbose)
1016 #define bootverbose (np->verbose)
1017 
1018 /*==========================================================
1019 **
1020 ** Command control block states.
1021 **
1022 **==========================================================
1023 */
1024 
1025 #define HS_IDLE (0)
1026 #define HS_BUSY (1)
1027 #define HS_NEGOTIATE (2) /* sync/wide data transfer*/
1028 #define HS_DISCONNECT (3) /* Disconnected by target */
1029 
1030 #define HS_DONEMASK (0x80)
1031 #define HS_COMPLETE (4|HS_DONEMASK)
1032 #define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */
1033 #define HS_RESET (6|HS_DONEMASK) /* SCSI reset */
1034 #define HS_ABORTED (7|HS_DONEMASK) /* Transfer aborted */
1035 #define HS_TIMEOUT (8|HS_DONEMASK) /* Software timeout */
1036 #define HS_FAIL (9|HS_DONEMASK) /* SCSI or PCI bus errors */
1037 #define HS_UNEXPECTED (10|HS_DONEMASK)/* Unexpected disconnect */
1038 
1039 /*
1040 ** Invalid host status values used by the SCRIPTS processor
1041 ** when the nexus is not fully identified.
1042 ** Shall never appear in a CCB.
1043 */
1044 
1045 #define HS_INVALMASK (0x40)
1046 #define HS_SELECTING (0|HS_INVALMASK)
1047 #define HS_IN_RESELECT (1|HS_INVALMASK)
1048 #define HS_STARTING (2|HS_INVALMASK)
1049 
1050 /*
1051 ** Flags set by the SCRIPT processor for commands
1052 ** that have been skipped.
1053 */
1054 #define HS_SKIPMASK (0x20)
1055 
1056 /*==========================================================
1057 **
1058 ** Software Interrupt Codes
1059 **
1060 **==========================================================
1061 */
1062 
1063 #define SIR_BAD_STATUS (1)
1064 #define SIR_XXXXXXXXXX (2)
1065 #define SIR_NEGO_SYNC (3)
1066 #define SIR_NEGO_WIDE (4)
1067 #define SIR_NEGO_FAILED (5)
1068 #define SIR_NEGO_PROTO (6)
1069 #define SIR_REJECT_RECEIVED (7)
1070 #define SIR_REJECT_SENT (8)
1071 #define SIR_IGN_RESIDUE (9)
1072 #define SIR_MISSING_SAVE (10)
1073 #define SIR_RESEL_NO_MSG_IN (11)
1074 #define SIR_RESEL_NO_IDENTIFY (12)
1075 #define SIR_RESEL_BAD_LUN (13)
1076 #define SIR_RESEL_BAD_TARGET (14)
1077 #define SIR_RESEL_BAD_I_T_L (15)
1078 #define SIR_RESEL_BAD_I_T_L_Q (16)
1079 #define SIR_DONE_OVERFLOW (17)
1080 #define SIR_INTFLY (18)
1081 #define SIR_MAX (18)
1082 
1083 /*==========================================================
1084 **
1085 ** Extended error codes.
1086 ** xerr_status field of struct ccb.
1087 **
1088 **==========================================================
1089 */
1090 
1091 #define XE_OK (0)
1092 #define XE_EXTRA_DATA (1) /* unexpected data phase */
1093 #define XE_BAD_PHASE (2) /* illegal phase (4/5) */
1094 
1095 /*==========================================================
1096 **
1097 ** Negotiation status.
1098 ** nego_status field of struct ccb.
1099 **
1100 **==========================================================
1101 */
1102 
1103 #define NS_NOCHANGE (0)
1104 #define NS_SYNC (1)
1105 #define NS_WIDE (2)
1106 #define NS_PPR (4)
1107 
1108 /*==========================================================
1109 **
1110 ** Misc.
1111 **
1112 **==========================================================
1113 */
1114 
1115 #define CCB_MAGIC (0xf2691ad2)
1116 
1117 /*==========================================================
1118 **
1119 ** Declaration of structs.
1120 **
1121 **==========================================================
1122 */
1123 
1124 static struct scsi_transport_template *ncr53c8xx_transport_template = NULL;
1125 
1126 struct tcb;
1127 struct lcb;
1128 struct ccb;
1129 struct ncb;
1130 struct script;
1131 
1132 struct link {
1135 };
1136 
1137 struct usrcmd {
1142 };
1143 
1144 #define UC_SETSYNC 10
1145 #define UC_SETTAGS 11
1146 #define UC_SETDEBUG 12
1147 #define UC_SETORDER 13
1148 #define UC_SETWIDE 14
1149 #define UC_SETFLAG 15
1150 #define UC_SETVERBOSE 17
1151 
1152 #define UF_TRACE (0x01)
1153 #define UF_NODISC (0x02)
1154 #define UF_NOSCAN (0x04)
1155 
1156 /*========================================================================
1157 **
1158 ** Declaration of structs: target control block
1159 **
1160 **========================================================================
1161 */
1162 struct tcb {
1163  /*----------------------------------------------------------------
1164  ** During reselection the ncr jumps to this point with SFBR
1165  ** set to the encoded target number with bit 7 set.
1166  ** if it's not this target, jump to the next.
1167  **
1168  ** JUMP IF (SFBR != #target#), @(next tcb)
1169  **----------------------------------------------------------------
1170  */
1171  struct link jump_tcb;
1172 
1173  /*----------------------------------------------------------------
1174  ** Load the actual values for the sxfer and the scntl3
1175  ** register (sync/wide mode).
1176  **
1177  ** SCR_COPY (1), @(sval field of this tcb), @(sxfer register)
1178  ** SCR_COPY (1), @(wval field of this tcb), @(scntl3 register)
1179  **----------------------------------------------------------------
1180  */
1182 
1183  /*----------------------------------------------------------------
1184  ** Get the IDENTIFY message and load the LUN to SFBR.
1185  **
1186  ** CALL, <RESEL_LUN>
1187  **----------------------------------------------------------------
1188  */
1189  struct link call_lun;
1190 
1191  /*----------------------------------------------------------------
1192  ** Now look for the right lun.
1193  **
1194  ** For i = 0 to 3
1195  ** SCR_JUMP ^ IFTRUE(MASK(i, 3)), @(first lcb mod. i)
1196  **
1197  ** Recent chips will prefetch the 4 JUMPS using only 1 burst.
1198  ** It is kind of hashcoding.
1199  **----------------------------------------------------------------
1200  */
1201  struct link jump_lcb[4]; /* JUMPs for reselection */
1202  struct lcb * lp[MAX_LUN]; /* The lcb's of this tcb */
1203 
1204  /*----------------------------------------------------------------
1205  ** Pointer to the ccb used for negotiation.
1206  ** Prevent from starting a negotiation for all queued commands
1207  ** when tagged command queuing is enabled.
1208  **----------------------------------------------------------------
1209  */
1210  struct ccb * nego_cp;
1211 
1212  /*----------------------------------------------------------------
1213  ** statistical data
1214  **----------------------------------------------------------------
1215  */
1218 
1219  /*----------------------------------------------------------------
1220  ** negotiation of wide and synch transfer and device quirks.
1221  **----------------------------------------------------------------
1222  */
1223 #ifdef SCSI_NCR_BIG_ENDIAN
1224 /*0*/ u16 period;
1225 /*2*/ u_char sval;
1226 /*3*/ u_char minsync;
1227 /*0*/ u_char wval;
1228 /*1*/ u_char widedone;
1229 /*2*/ u_char quirks;
1230 /*3*/ u_char maxoffs;
1231 #else
1233 /*1*/ u_char sval;
1234 /*2*/ u16 period;
1238 /*3*/ u_char wval;
1239 #endif
1240 
1241  /* User settable limits and options. */
1247 };
1248 
1249 /*========================================================================
1250 **
1251 ** Declaration of structs: lun control block
1252 **
1253 **========================================================================
1254 */
1255 struct lcb {
1256  /*----------------------------------------------------------------
1257  ** During reselection the ncr jumps to this point
1258  ** with SFBR set to the "Identify" message.
1259  ** if it's not this lun, jump to the next.
1260  **
1261  ** JUMP IF (SFBR != #lun#), @(next lcb of this target)
1262  **
1263  ** It is this lun. Load TEMP with the nexus jumps table
1264  ** address and jump to RESEL_TAG (or RESEL_NOTAG).
1265  **
1266  ** SCR_COPY (4), p_jump_ccb, TEMP,
1267  ** SCR_JUMP, <RESEL_TAG>
1268  **----------------------------------------------------------------
1269  */
1270  struct link jump_lcb;
1272  struct link jump_tag;
1273  ncrcmd p_jump_ccb; /* Jump table bus address */
1274 
1275  /*----------------------------------------------------------------
1276  ** Jump table used by the script processor to directly jump
1277  ** to the CCB corresponding to the reselected nexus.
1278  ** Address is allocated on 256 bytes boundary in order to
1279  ** allow 8 bit calculation of the tag jump entry for up to
1280  ** 64 possible tags.
1281  **----------------------------------------------------------------
1282  */
1283  u32 jump_ccb_0; /* Default table if no tags */
1284  u32 *jump_ccb; /* Virtual address */
1285 
1286  /*----------------------------------------------------------------
1287  ** CCB queue management.
1288  **----------------------------------------------------------------
1289  */
1290  struct list_head free_ccbq; /* Queue of available CCBs */
1291  struct list_head busy_ccbq; /* Queue of busy CCBs */
1292  struct list_head wait_ccbq; /* Queue of waiting for IO CCBs */
1293  struct list_head skip_ccbq; /* Queue of skipped CCBs */
1294  u_char actccbs; /* Number of allocated CCBs */
1295  u_char busyccbs; /* CCBs busy for this lun */
1296  u_char queuedccbs; /* CCBs queued to the controller*/
1297  u_char queuedepth; /* Queue depth for this lun */
1298  u_char scdev_depth; /* SCSI device queue depth */
1299  u_char maxnxs; /* Max possible nexuses */
1300 
1301  /*----------------------------------------------------------------
1302  ** Control of tagged command queuing.
1303  ** Tags allocation is performed using a circular buffer.
1304  ** This avoids using a loop for tag allocation.
1305  **----------------------------------------------------------------
1306  */
1307  u_char ia_tag; /* Allocation index */
1308  u_char if_tag; /* Freeing index */
1309  u_char cb_tags[MAX_TAGS]; /* Circular tags buffer */
1310  u_char usetags; /* Command queuing is active */
1311  u_char maxtags; /* Max nr of tags asked by user */
1312  u_char numtags; /* Current number of tags */
1313 
1314  /*----------------------------------------------------------------
1315  ** QUEUE FULL control and ORDERED tag control.
1316  **----------------------------------------------------------------
1317  */
1318  /*----------------------------------------------------------------
1319  ** QUEUE FULL and ORDERED tag control.
1320  **----------------------------------------------------------------
1321  */
1322  u16 num_good; /* Nr of GOOD since QUEUE FULL */
1323  tagmap_t tags_umap; /* Used tags bitmap */
1324  tagmap_t tags_smap; /* Tags in use at 'tag_stime' */
1325  u_long tags_stime; /* Last time we set smap=umap */
1326  struct ccb * held_ccb; /* CCB held for QUEUE FULL */
1327 };
1328 
1329 /*========================================================================
1330 **
1331 ** Declaration of structs: the launch script.
1332 **
1333 **========================================================================
1334 **
1335 ** It is part of the CCB and is called by the scripts processor to
1336 ** start or restart the data structure (nexus).
1337 ** This 6 DWORDs mini script makes use of prefetching.
1338 **
1339 **------------------------------------------------------------------------
1340 */
1341 struct launch {
1342  /*----------------------------------------------------------------
1343  ** SCR_COPY(4), @(p_phys), @(dsa register)
1344  ** SCR_JUMP, @(scheduler_point)
1345  **----------------------------------------------------------------
1346  */
1347  ncrcmd setup_dsa[3]; /* Copy 'phys' address to dsa */
1348  struct link schedule; /* Jump to scheduler point */
1349  ncrcmd p_phys; /* 'phys' header bus address */
1350 };
1351 
1352 /*========================================================================
1353 **
1354 ** Declaration of structs: global HEADER.
1355 **
1356 **========================================================================
1357 **
1358 ** This substructure is copied from the ccb to a global address after
1359 ** selection (or reselection) and copied back before disconnect.
1360 **
1361 ** These fields are accessible to the script processor.
1362 **
1363 **------------------------------------------------------------------------
1364 */
1365 
1366 struct head {
1367  /*----------------------------------------------------------------
1368  ** Saved data pointer.
1369  ** Points to the position in the script responsible for the
1370  ** actual transfer transfer of data.
1371  ** It's written after reception of a SAVE_DATA_POINTER message.
1372  ** The goalpointer points after the last transfer command.
1373  **----------------------------------------------------------------
1374  */
1378 
1379  /*----------------------------------------------------------------
1380  ** Alternate data pointer.
1381  ** They are copied back to savep/lastp/goalp by the SCRIPTS
1382  ** when the direction is unknown and the device claims data out.
1383  **----------------------------------------------------------------
1384  */
1387 
1388  /*----------------------------------------------------------------
1389  ** The virtual address of the ccb containing this header.
1390  **----------------------------------------------------------------
1391  */
1392  struct ccb * cp;
1393 
1394  /*----------------------------------------------------------------
1395  ** Status fields.
1396  **----------------------------------------------------------------
1397  */
1398  u_char scr_st[4]; /* script status */
1399  u_char status[4]; /* host status. must be the */
1400  /* last DWORD of the header. */
1401 };
1402 
1403 /*
1404 ** The status bytes are used by the host and the script processor.
1405 **
1406 ** The byte corresponding to the host_status must be stored in the
1407 ** last DWORD of the CCB header since it is used for command
1408 ** completion (ncr_wakeup()). Doing so, we are sure that the header
1409 ** has been entirely copied back to the CCB when the host_status is
1410 ** seen complete by the CPU.
1411 **
1412 ** The last four bytes (status[4]) are copied to the scratchb register
1413 ** (declared as scr0..scr3 in ncr_reg.h) just after the select/reselect,
1414 ** and copied back just after disconnecting.
1415 ** Inside the script the XX_REG are used.
1416 **
1417 ** The first four bytes (scr_st[4]) are used inside the script by
1418 ** "COPY" commands.
1419 ** Because source and destination must have the same alignment
1420 ** in a DWORD, the fields HAVE to be at the chosen offsets.
1421 ** xerr_st 0 (0x34) scratcha
1422 ** sync_st 1 (0x05) sxfer
1423 ** wide_st 3 (0x03) scntl3
1424 */
1425 
1426 /*
1427 ** Last four bytes (script)
1428 */
1429 #define QU_REG scr0
1430 #define HS_REG scr1
1431 #define HS_PRT nc_scr1
1432 #define SS_REG scr2
1433 #define SS_PRT nc_scr2
1434 #define PS_REG scr3
1435 
1436 /*
1437 ** Last four bytes (host)
1438 */
1439 #ifdef SCSI_NCR_BIG_ENDIAN
1440 #define actualquirks phys.header.status[3]
1441 #define host_status phys.header.status[2]
1442 #define scsi_status phys.header.status[1]
1443 #define parity_status phys.header.status[0]
1444 #else
1445 #define actualquirks phys.header.status[0]
1446 #define host_status phys.header.status[1]
1447 #define scsi_status phys.header.status[2]
1448 #define parity_status phys.header.status[3]
1449 #endif
1450 
1451 /*
1452 ** First four bytes (script)
1453 */
1454 #define xerr_st header.scr_st[0]
1455 #define sync_st header.scr_st[1]
1456 #define nego_st header.scr_st[2]
1457 #define wide_st header.scr_st[3]
1458 
1459 /*
1460 ** First four bytes (host)
1461 */
1462 #define xerr_status phys.xerr_st
1463 #define nego_status phys.nego_st
1464 
1465 #if 0
1466 #define sync_status phys.sync_st
1467 #define wide_status phys.wide_st
1468 #endif
1469 
1470 /*==========================================================
1471 **
1472 ** Declaration of structs: Data structure block
1473 **
1474 **==========================================================
1475 **
1476 ** During execution of a ccb by the script processor,
1477 ** the DSA (data structure address) register points
1478 ** to this substructure of the ccb.
1479 ** This substructure contains the header with
1480 ** the script-processor-changeable data and
1481 ** data blocks for the indirect move commands.
1482 **
1483 **----------------------------------------------------------
1484 */
1485 
1486 struct dsb {
1487 
1488  /*
1489  ** Header.
1490  */
1491 
1492  struct head header;
1493 
1494  /*
1495  ** Table data for Script
1496  */
1497 
1500  struct scr_tblmove cmd ;
1503 };
1504 
1505 
1506 /*========================================================================
1507 **
1508 ** Declaration of structs: Command control block.
1509 **
1510 **========================================================================
1511 */
1512 struct ccb {
1513  /*----------------------------------------------------------------
1514  ** This is the data structure which is pointed by the DSA
1515  ** register when it is executed by the script processor.
1516  ** It must be the first entry because it contains the header
1517  ** as first entry that must be cache line aligned.
1518  **----------------------------------------------------------------
1519  */
1520  struct dsb phys;
1521 
1522  /*----------------------------------------------------------------
1523  ** Mini-script used at CCB execution start-up.
1524  ** Load the DSA with the data structure address (phys) and
1525  ** jump to SELECT. Jump to CANCEL if CCB is to be canceled.
1526  **----------------------------------------------------------------
1527  */
1528  struct launch start;
1529 
1530  /*----------------------------------------------------------------
1531  ** Mini-script used at CCB relection to restart the nexus.
1532  ** Load the DSA with the data structure address (phys) and
1533  ** jump to RESEL_DSA. Jump to ABORT if CCB is to be aborted.
1534  **----------------------------------------------------------------
1535  */
1536  struct launch restart;
1537 
1538  /*----------------------------------------------------------------
1539  ** If a data transfer phase is terminated too early
1540  ** (after reception of a message (i.e. DISCONNECT)),
1541  ** we have to prepare a mini script to transfer
1542  ** the rest of the data.
1543  **----------------------------------------------------------------
1544  */
1546 
1547  /*----------------------------------------------------------------
1548  ** The general SCSI driver provides a
1549  ** pointer to a control block.
1550  **----------------------------------------------------------------
1551  */
1552  struct scsi_cmnd *cmd; /* SCSI command */
1553  u_char cdb_buf[16]; /* Copy of CDB */
1555  int data_len; /* Total data length */
1556 
1557  /*----------------------------------------------------------------
1558  ** Message areas.
1559  ** We prepare a message to be sent after selection.
1560  ** We may use a second one if the command is rescheduled
1561  ** due to GETCC or QFULL.
1562  ** Contents are IDENTIFY and SIMPLE_TAG.
1563  ** While negotiating sync or wide transfer,
1564  ** a SDTR or WDTR message is appended.
1565  **----------------------------------------------------------------
1566  */
1569 
1570  /*----------------------------------------------------------------
1571  ** Other fields.
1572  **----------------------------------------------------------------
1573  */
1574  u_long p_ccb; /* BUS address of this CCB */
1575  u_char sensecmd[6]; /* Sense command */
1576  u_char tag; /* Tag for this transfer */
1577  /* 255 means no tag */
1582  struct ccb * link_ccb; /* Host adapter CCB chain */
1583  struct list_head link_ccbq; /* Link to unit CCB queue */
1584  u32 startp; /* Initial data pointer */
1585  u_long magic; /* Free / busy CCB flag */
1586 };
1587 
1588 #define CCB_PHYS(cp,lbl) (cp->p_ccb + offsetof(struct ccb, lbl))
1589 
1590 
1591 /*========================================================================
1592 **
1593 ** Declaration of structs: NCR device descriptor
1594 **
1595 **========================================================================
1596 */
1597 struct ncb {
1598  /*----------------------------------------------------------------
1599  ** The global header.
1600  ** It is accessible to both the host and the script processor.
1601  ** Must be cache line size aligned (32 for x86) in order to
1602  ** allow cache line bursting when it is copied to/from CCB.
1603  **----------------------------------------------------------------
1604  */
1605  struct head header;
1606 
1607  /*----------------------------------------------------------------
1608  ** CCBs management queues.
1609  **----------------------------------------------------------------
1610  */
1611  struct scsi_cmnd *waiting_list; /* Commands waiting for a CCB */
1612  /* when lcb is not allocated. */
1613  struct scsi_cmnd *done_list; /* Commands waiting for done() */
1614  /* callback to be invoked. */
1615  spinlock_t smp_lock; /* Lock for SMP threading */
1616 
1617  /*----------------------------------------------------------------
1618  ** Chip and controller indentification.
1619  **----------------------------------------------------------------
1620  */
1621  int unit; /* Unit number */
1622  char inst_name[16]; /* ncb instance name */
1623 
1624  /*----------------------------------------------------------------
1625  ** Initial value of some IO register bits.
1626  ** These values are assumed to have been set by BIOS, and may
1627  ** be used for probing adapter implementation differences.
1628  **----------------------------------------------------------------
1629  */
1632 
1633  /*----------------------------------------------------------------
1634  ** Actual initial value of IO register bits used by the
1635  ** driver. They are loaded at initialisation according to
1636  ** features that are to be enabled.
1637  **----------------------------------------------------------------
1638  */
1641 
1642  /*----------------------------------------------------------------
1643  ** Targets management.
1644  ** During reselection the ncr jumps to jump_tcb.
1645  ** The SFBR register is loaded with the encoded target id.
1646  ** For i = 0 to 3
1647  ** SCR_JUMP ^ IFTRUE(MASK(i, 3)), @(next tcb mod. i)
1648  **
1649  ** Recent chips will prefetch the 4 JUMPS using only 1 burst.
1650  ** It is kind of hashcoding.
1651  **----------------------------------------------------------------
1652  */
1653  struct link jump_tcb[4]; /* JUMPs for reselection */
1654  struct tcb target[MAX_TARGET]; /* Target data */
1655 
1656  /*----------------------------------------------------------------
1657  ** Virtual and physical bus addresses of the chip.
1658  **----------------------------------------------------------------
1659  */
1660  void __iomem *vaddr; /* Virtual and bus address of */
1661  unsigned long paddr; /* chip's IO registers. */
1662  unsigned long paddr2; /* On-chip RAM bus address. */
1663  volatile /* Pointer to volatile for */
1664  struct ncr_reg __iomem *reg; /* memory mapped IO. */
1665 
1666  /*----------------------------------------------------------------
1667  ** SCRIPTS virtual and physical bus addresses.
1668  ** 'script' is loaded in the on-chip RAM if present.
1669  ** 'scripth' stays in main memory.
1670  **----------------------------------------------------------------
1671  */
1672  struct script *script0; /* Copies of script and scripth */
1673  struct scripth *scripth0; /* relocated for this ncb. */
1674  struct scripth *scripth; /* Actual scripth virt. address */
1675  u_long p_script; /* Actual script and scripth */
1676  u_long p_scripth; /* bus addresses. */
1677 
1678  /*----------------------------------------------------------------
1679  ** General controller parameters and configuration.
1680  **----------------------------------------------------------------
1681  */
1682  struct device *dev;
1683  u_char revision_id; /* PCI device revision id */
1684  u32 irq; /* IRQ level */
1685  u32 features; /* Chip features map */
1686  u_char myaddr; /* SCSI id of the adapter */
1687  u_char maxburst; /* log base 2 of dwords burst */
1688  u_char maxwide; /* Maximum transfer width */
1689  u_char minsync; /* Minimum sync period factor */
1690  u_char maxsync; /* Maximum sync period factor */
1691  u_char maxoffs; /* Max scsi offset */
1692  u_char multiplier; /* Clock multiplier (1,2,4) */
1693  u_char clock_divn; /* Number of clock divisors */
1694  u_long clock_khz; /* SCSI clock frequency in KHz */
1695 
1696  /*----------------------------------------------------------------
1697  ** Start queue management.
1698  ** It is filled up by the host processor and accessed by the
1699  ** SCRIPTS processor in order to start SCSI commands.
1700  **----------------------------------------------------------------
1701  */
1702  u16 squeueput; /* Next free slot of the queue */
1703  u16 actccbs; /* Number of allocated CCBs */
1704  u16 queuedccbs; /* Number of CCBs in start queue*/
1705  u16 queuedepth; /* Start queue depth */
1706 
1707  /*----------------------------------------------------------------
1708  ** Timeout handler.
1709  **----------------------------------------------------------------
1710  */
1711  struct timer_list timer; /* Timer handler link header */
1713  u_long settle_time; /* Resetting the SCSI BUS */
1714 
1715  /*----------------------------------------------------------------
1716  ** Debugging and profiling.
1717  **----------------------------------------------------------------
1718  */
1719  struct ncr_reg regdump; /* Register dump */
1720  u_long regtime; /* Time it has been done */
1721 
1722  /*----------------------------------------------------------------
1723  ** Miscellaneous buffers accessed by the scripts-processor.
1724  ** They shall be DWORD aligned, because they may be read or
1725  ** written with a SCR_COPY script command.
1726  **----------------------------------------------------------------
1727  */
1728  u_char msgout[8]; /* Buffer for MESSAGE OUT */
1729  u_char msgin [8]; /* Buffer for MESSAGE IN */
1730  u32 lastmsg; /* Last SCSI message sent */
1731  u_char scratch; /* Scratch for SCSI receive */
1732 
1733  /*----------------------------------------------------------------
1734  ** Miscellaneous configuration and status parameters.
1735  **----------------------------------------------------------------
1736  */
1737  u_char disc; /* Diconnection allowed */
1738  u_char scsi_mode; /* Current SCSI BUS mode */
1739  u_char order; /* Tag order to use */
1740  u_char verbose; /* Verbosity for this controller*/
1741  int ncr_cache; /* Used for cache test at init. */
1742  u_long p_ncb; /* BUS address of this NCB */
1743 
1744  /*----------------------------------------------------------------
1745  ** Command completion handling.
1746  **----------------------------------------------------------------
1747  */
1748 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
1749  struct ccb *(ccb_done[MAX_DONE]);
1751 #endif
1752  /*----------------------------------------------------------------
1753  ** Fields that should be removed or changed.
1754  **----------------------------------------------------------------
1755  */
1756  struct ccb *ccb; /* Global CCB */
1757  struct usrcmd user; /* Command from user */
1758  volatile u_char release_stage; /* Synchronisation stage on release */
1759 };
1760 
1761 #define NCB_SCRIPT_PHYS(np,lbl) (np->p_script + offsetof (struct script, lbl))
1762 #define NCB_SCRIPTH_PHYS(np,lbl) (np->p_scripth + offsetof (struct scripth,lbl))
1763 
1764 /*==========================================================
1765 **
1766 **
1767 ** Script for NCR-Processor.
1768 **
1769 ** Use ncr_script_fill() to create the variable parts.
1770 ** Use ncr_script_copy_and_bind() to make a copy and
1771 ** bind to physical addresses.
1772 **
1773 **
1774 **==========================================================
1775 **
1776 ** We have to know the offsets of all labels before
1777 ** we reach them (for forward jumps).
1778 ** Therefore we declare a struct here.
1779 ** If you make changes inside the script,
1780 ** DONT FORGET TO CHANGE THE LENGTHS HERE!
1781 **
1782 **----------------------------------------------------------
1783 */
1784 
1785 /*
1786 ** For HP Zalon/53c720 systems, the Zalon interface
1787 ** between CPU and 53c720 does prefetches, which causes
1788 ** problems with self modifying scripts. The problem
1789 ** is overcome by calling a dummy subroutine after each
1790 ** modification, to force a refetch of the script on
1791 ** return from the subroutine.
1792 */
1793 
1794 #ifdef CONFIG_NCR53C8XX_PREFETCH
1795 #define PREFETCH_FLUSH_CNT 2
1796 #define PREFETCH_FLUSH SCR_CALL, PADDRH (wait_dma),
1797 #else
1798 #define PREFETCH_FLUSH_CNT 0
1799 #define PREFETCH_FLUSH
1800 #endif
1801 
1802 /*
1803 ** Script fragments which are loaded into the on-chip RAM
1804 ** of 825A, 875 and 895 chips.
1805 */
1806 struct script {
1828 #ifndef SCSI_NCR_CCB_DONE_SUPPORT
1829  ncrcmd signal [ 12];
1830 #else
1835 #endif
1841  ncrcmd idle [ 2];
1855 };
1856 
1857 /*
1858 ** Script fragments which stay in main memory for all chips.
1859 */
1860 struct scripth {
1863 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
1866 #endif
1870  ncrcmd skip2 [ 19];
1908 };
1909 
1910 /*==========================================================
1911 **
1912 **
1913 ** Function headers.
1914 **
1915 **
1916 **==========================================================
1917 */
1918 
1919 static void ncr_alloc_ccb (struct ncb *np, u_char tn, u_char ln);
1920 static void ncr_complete (struct ncb *np, struct ccb *cp);
1921 static void ncr_exception (struct ncb *np);
1922 static void ncr_free_ccb (struct ncb *np, struct ccb *cp);
1923 static void ncr_init_ccb (struct ncb *np, struct ccb *cp);
1924 static void ncr_init_tcb (struct ncb *np, u_char tn);
1925 static struct lcb * ncr_alloc_lcb (struct ncb *np, u_char tn, u_char ln);
1926 static struct lcb * ncr_setup_lcb (struct ncb *np, struct scsi_device *sdev);
1927 static void ncr_getclock (struct ncb *np, int mult);
1928 static void ncr_selectclock (struct ncb *np, u_char scntl3);
1929 static struct ccb *ncr_get_ccb (struct ncb *np, struct scsi_cmnd *cmd);
1930 static void ncr_chip_reset (struct ncb *np, int delay);
1931 static void ncr_init (struct ncb *np, int reset, char * msg, u_long code);
1932 static int ncr_int_sbmc (struct ncb *np);
1933 static int ncr_int_par (struct ncb *np);
1934 static void ncr_int_ma (struct ncb *np);
1935 static void ncr_int_sir (struct ncb *np);
1936 static void ncr_int_sto (struct ncb *np);
1937 static void ncr_negotiate (struct ncb* np, struct tcb* tp);
1938 static int ncr_prepare_nego(struct ncb *np, struct ccb *cp, u_char *msgptr);
1939 
1940 static void ncr_script_copy_and_bind
1941  (struct ncb *np, ncrcmd *src, ncrcmd *dst, int len);
1942 static void ncr_script_fill (struct script * scr, struct scripth * scripth);
1943 static int ncr_scatter (struct ncb *np, struct ccb *cp, struct scsi_cmnd *cmd);
1944 static void ncr_getsync (struct ncb *np, u_char sfac, u_char *fakp, u_char *scntl3p);
1945 static void ncr_setsync (struct ncb *np, struct ccb *cp, u_char scntl3, u_char sxfer);
1946 static void ncr_setup_tags (struct ncb *np, struct scsi_device *sdev);
1947 static void ncr_setwide (struct ncb *np, struct ccb *cp, u_char wide, u_char ack);
1948 static int ncr_snooptest (struct ncb *np);
1949 static void ncr_timeout (struct ncb *np);
1950 static void ncr_wakeup (struct ncb *np, u_long code);
1951 static void ncr_wakeup_done (struct ncb *np);
1952 static void ncr_start_next_ccb (struct ncb *np, struct lcb * lp, int maxn);
1953 static void ncr_put_start_queue(struct ncb *np, struct ccb *cp);
1954 
1955 static void insert_into_waiting_list(struct ncb *np, struct scsi_cmnd *cmd);
1956 static struct scsi_cmnd *retrieve_from_waiting_list(int to_remove, struct ncb *np, struct scsi_cmnd *cmd);
1957 static void process_waiting_list(struct ncb *np, int sts);
1958 
1959 #define remove_from_waiting_list(np, cmd) \
1960  retrieve_from_waiting_list(1, (np), (cmd))
1961 #define requeue_waiting_list(np) process_waiting_list((np), DID_OK)
1962 #define reset_waiting_list(np) process_waiting_list((np), DID_RESET)
1963 
1964 static inline char *ncr_name (struct ncb *np)
1965 {
1966  return np->inst_name;
1967 }
1968 
1969 
1970 /*==========================================================
1971 **
1972 **
1973 ** Scripts for NCR-Processor.
1974 **
1975 ** Use ncr_script_bind for binding to physical addresses.
1976 **
1977 **
1978 **==========================================================
1979 **
1980 ** NADDR generates a reference to a field of the controller data.
1981 ** PADDR generates a reference to another part of the script.
1982 ** RADDR generates a reference to a script processor register.
1983 ** FADDR generates a reference to a script processor register
1984 ** with offset.
1985 **
1986 **----------------------------------------------------------
1987 */
1988 
1989 #define RELOC_SOFTC 0x40000000
1990 #define RELOC_LABEL 0x50000000
1991 #define RELOC_REGISTER 0x60000000
1992 #if 0
1993 #define RELOC_KVAR 0x70000000
1994 #endif
1995 #define RELOC_LABELH 0x80000000
1996 #define RELOC_MASK 0xf0000000
1997 
1998 #define NADDR(label) (RELOC_SOFTC | offsetof(struct ncb, label))
1999 #define PADDR(label) (RELOC_LABEL | offsetof(struct script, label))
2000 #define PADDRH(label) (RELOC_LABELH | offsetof(struct scripth, label))
2001 #define RADDR(label) (RELOC_REGISTER | REG(label))
2002 #define FADDR(label,ofs)(RELOC_REGISTER | ((REG(label))+(ofs)))
2003 #if 0
2004 #define KVAR(which) (RELOC_KVAR | (which))
2005 #endif
2006 
2007 #if 0
2008 #define SCRIPT_KVAR_JIFFIES (0)
2009 #define SCRIPT_KVAR_FIRST SCRIPT_KVAR_JIFFIES
2010 #define SCRIPT_KVAR_LAST SCRIPT_KVAR_JIFFIES
2011 /*
2012  * Kernel variables referenced in the scripts.
2013  * THESE MUST ALL BE ALIGNED TO A 4-BYTE BOUNDARY.
2014  */
2015 static void *script_kvars[] __initdata =
2016  { (void *)&jiffies };
2017 #endif
2018 
2019 static struct script script0 __initdata = {
2020 /*--------------------------< START >-----------------------*/ {
2021  /*
2022  ** This NOP will be patched with LED ON
2023  ** SCR_REG_REG (gpreg, SCR_AND, 0xfe)
2024  */
2025  SCR_NO_OP,
2026  0,
2027  /*
2028  ** Clear SIGP.
2029  */
2030  SCR_FROM_REG (ctest2),
2031  0,
2032  /*
2033  ** Then jump to a certain point in tryloop.
2034  ** Due to the lack of indirect addressing the code
2035  ** is self modifying here.
2036  */
2037  SCR_JUMP,
2038 }/*-------------------------< STARTPOS >--------------------*/,{
2039  PADDRH(tryloop),
2040 
2041 }/*-------------------------< SELECT >----------------------*/,{
2042  /*
2043  ** DSA contains the address of a scheduled
2044  ** data structure.
2045  **
2046  ** SCRATCHA contains the address of the script,
2047  ** which starts the next entry.
2048  **
2049  ** Set Initiator mode.
2050  **
2051  ** (Target mode is left as an exercise for the reader)
2052  */
2053 
2054  SCR_CLR (SCR_TRG),
2055  0,
2057  0,
2058 
2059  /*
2060  ** And try to select this target.
2061  */
2062  SCR_SEL_TBL_ATN ^ offsetof (struct dsb, select),
2063  PADDR (reselect),
2064 
2065 }/*-------------------------< SELECT2 >----------------------*/,{
2066  /*
2067  ** Now there are 4 possibilities:
2068  **
2069  ** (1) The ncr loses arbitration.
2070  ** This is ok, because it will try again,
2071  ** when the bus becomes idle.
2072  ** (But beware of the timeout function!)
2073  **
2074  ** (2) The ncr is reselected.
2075  ** Then the script processor takes the jump
2076  ** to the RESELECT label.
2077  **
2078  ** (3) The ncr wins arbitration.
2079  ** Then it will execute SCRIPTS instruction until
2080  ** the next instruction that checks SCSI phase.
2081  ** Then will stop and wait for selection to be
2082  ** complete or selection time-out to occur.
2083  ** As a result the SCRIPTS instructions until
2084  ** LOADPOS + 2 should be executed in parallel with
2085  ** the SCSI core performing selection.
2086  */
2087 
2088  /*
2089  ** The MESSAGE_REJECT problem seems to be due to a selection
2090  ** timing problem.
2091  ** Wait immediately for the selection to complete.
2092  ** (2.5x behaves so)
2093  */
2095  0,
2096 
2097  /*
2098  ** Next time use the next slot.
2099  */
2100  SCR_COPY (4),
2101  RADDR (temp),
2102  PADDR (startpos),
2103  /*
2104  ** The ncr doesn't have an indirect load
2105  ** or store command. So we have to
2106  ** copy part of the control block to a
2107  ** fixed place, where we can access it.
2108  **
2109  ** We patch the address part of a
2110  ** COPY command with the DSA-register.
2111  */
2112  SCR_COPY_F (4),
2113  RADDR (dsa),
2114  PADDR (loadpos),
2115  /*
2116  ** Flush script prefetch if required
2117  */
2119  /*
2120  ** then we do the actual copy.
2121  */
2122  SCR_COPY (sizeof (struct head)),
2123  /*
2124  ** continued after the next label ...
2125  */
2126 }/*-------------------------< LOADPOS >---------------------*/,{
2127  0,
2128  NADDR (header),
2129  /*
2130  ** Wait for the next phase or the selection
2131  ** to complete or time-out.
2132  */
2134  PADDR (prepare),
2135 
2136 }/*-------------------------< SEND_IDENT >----------------------*/,{
2137  /*
2138  ** Selection complete.
2139  ** Send the IDENTIFY and SIMPLE_TAG messages
2140  ** (and the EXTENDED_SDTR message)
2141  */
2143  offsetof (struct dsb, smsg),
2144  SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
2145  PADDRH (resend_ident),
2146  SCR_LOAD_REG (scratcha, 0x80),
2147  0,
2148  SCR_COPY (1),
2149  RADDR (scratcha),
2150  NADDR (lastmsg),
2151 }/*-------------------------< PREPARE >----------------------*/,{
2152  /*
2153  ** load the savep (saved pointer) into
2154  ** the TEMP register (actual pointer)
2155  */
2156  SCR_COPY (4),
2157  NADDR (header.savep),
2158  RADDR (temp),
2159  /*
2160  ** Initialize the status registers
2161  */
2162  SCR_COPY (4),
2163  NADDR (header.status),
2164  RADDR (scr0),
2165 }/*-------------------------< PREPARE2 >---------------------*/,{
2166  /*
2167  ** Initialize the msgout buffer with a NOOP message.
2168  */
2169  SCR_LOAD_REG (scratcha, NOP),
2170  0,
2171  SCR_COPY (1),
2172  RADDR (scratcha),
2173  NADDR (msgout),
2174 #if 0
2175  SCR_COPY (1),
2176  RADDR (scratcha),
2177  NADDR (msgin),
2178 #endif
2179  /*
2180  ** Anticipate the COMMAND phase.
2181  ** This is the normal case for initial selection.
2182  */
2184  PADDR (dispatch),
2185 
2186 }/*-------------------------< COMMAND >--------------------*/,{
2187  /*
2188  ** ... and send the command
2189  */
2191  offsetof (struct dsb, cmd),
2192  /*
2193  ** If status is still HS_NEGOTIATE, negotiation failed.
2194  ** We check this here, since we want to do that
2195  ** only once.
2196  */
2197  SCR_FROM_REG (HS_REG),
2198  0,
2201 
2202 }/*-----------------------< DISPATCH >----------------------*/,{
2203  /*
2204  ** MSG_IN is the only phase that shall be
2205  ** entered at least once for each (re)selection.
2206  ** So we test it first.
2207  */
2209  PADDR (msg_in),
2210 
2212  0,
2213  /*
2214  ** DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 4.
2215  ** Possible data corruption during Memory Write and Invalidate.
2216  ** This work-around resets the addressing logic prior to the
2217  ** start of the first MOVE of a DATA IN phase.
2218  ** (See Documentation/scsi/ncr53c8xx.txt for more information)
2219  */
2221  20,
2222  SCR_COPY (4),
2223  RADDR (scratcha),
2224  RADDR (scratcha),
2225  SCR_RETURN,
2226  0,
2227  SCR_JUMP ^ IFTRUE (IF (SCR_STATUS)),
2228  PADDR (status),
2229  SCR_JUMP ^ IFTRUE (IF (SCR_COMMAND)),
2230  PADDR (command),
2231  SCR_JUMP ^ IFTRUE (IF (SCR_MSG_OUT)),
2232  PADDR (msg_out),
2233  /*
2234  ** Discard one illegal phase byte, if required.
2235  */
2236  SCR_LOAD_REG (scratcha, XE_BAD_PHASE),
2237  0,
2238  SCR_COPY (1),
2239  RADDR (scratcha),
2240  NADDR (xerr_st),
2242  8,
2243  SCR_MOVE_ABS (1) ^ SCR_ILG_OUT,
2244  NADDR (scratch),
2246  8,
2247  SCR_MOVE_ABS (1) ^ SCR_ILG_IN,
2248  NADDR (scratch),
2249  SCR_JUMP,
2250  PADDR (dispatch),
2251 
2252 }/*-------------------------< CLRACK >----------------------*/,{
2253  /*
2254  ** Terminate possible pending message phase.
2255  */
2256  SCR_CLR (SCR_ACK),
2257  0,
2258  SCR_JUMP,
2259  PADDR (dispatch),
2260 
2261 }/*-------------------------< NO_DATA >--------------------*/,{
2262  /*
2263  ** The target wants to tranfer too much data
2264  ** or in the wrong direction.
2265  ** Remember that in extended error.
2266  */
2267  SCR_LOAD_REG (scratcha, XE_EXTRA_DATA),
2268  0,
2269  SCR_COPY (1),
2270  RADDR (scratcha),
2271  NADDR (xerr_st),
2272  /*
2273  ** Discard one data byte, if required.
2274  */
2276  8,
2277  SCR_MOVE_ABS (1) ^ SCR_DATA_OUT,
2278  NADDR (scratch),
2280  8,
2281  SCR_MOVE_ABS (1) ^ SCR_DATA_IN,
2282  NADDR (scratch),
2283  /*
2284  ** .. and repeat as required.
2285  */
2286  SCR_CALL,
2287  PADDR (dispatch),
2288  SCR_JUMP,
2289  PADDR (no_data),
2290 
2291 }/*-------------------------< STATUS >--------------------*/,{
2292  /*
2293  ** get the status
2294  */
2295  SCR_MOVE_ABS (1) ^ SCR_STATUS,
2296  NADDR (scratch),
2297  /*
2298  ** save status to scsi_status.
2299  ** mark as complete.
2300  */
2301  SCR_TO_REG (SS_REG),
2302  0,
2304  0,
2305  SCR_JUMP,
2306  PADDR (dispatch),
2307 }/*-------------------------< MSG_IN >--------------------*/,{
2308  /*
2309  ** Get the first byte of the message
2310  ** and save it to SCRATCHA.
2311  **
2312  ** The script processor doesn't negate the
2313  ** ACK signal after this transfer.
2314  */
2315  SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2316  NADDR (msgin[0]),
2317 }/*-------------------------< MSG_IN2 >--------------------*/,{
2318  /*
2319  ** Handle this message.
2320  */
2322  PADDR (complete),
2324  PADDR (disconnect),
2326  PADDR (save_dp),
2328  PADDR (restore_dp),
2330  PADDRH (msg_extended),
2331  SCR_JUMP ^ IFTRUE (DATA (NOP)),
2332  PADDR (clrack),
2334  PADDRH (msg_reject),
2336  PADDRH (msg_ign_residue),
2337  /*
2338  ** Rest of the messages left as
2339  ** an exercise ...
2340  **
2341  ** Unimplemented messages:
2342  ** fall through to MSG_BAD.
2343  */
2344 }/*-------------------------< MSG_BAD >------------------*/,{
2345  /*
2346  ** unimplemented message - reject it.
2347  */
2348  SCR_INT,
2350  SCR_LOAD_REG (scratcha, MESSAGE_REJECT),
2351  0,
2352 }/*-------------------------< SETMSG >----------------------*/,{
2353  SCR_COPY (1),
2354  RADDR (scratcha),
2355  NADDR (msgout),
2356  SCR_SET (SCR_ATN),
2357  0,
2358  SCR_JUMP,
2359  PADDR (clrack),
2360 }/*-------------------------< CLEANUP >-------------------*/,{
2361  /*
2362  ** dsa: Pointer to ccb
2363  ** or xxxxxxFF (no ccb)
2364  **
2365  ** HS_REG: Host-Status (<>0!)
2366  */
2367  SCR_FROM_REG (dsa),
2368  0,
2369  SCR_JUMP ^ IFTRUE (DATA (0xff)),
2370  PADDR (start),
2371  /*
2372  ** dsa is valid.
2373  ** complete the cleanup.
2374  */
2375  SCR_JUMP,
2376  PADDR (cleanup_ok),
2377 
2378 }/*-------------------------< COMPLETE >-----------------*/,{
2379  /*
2380  ** Complete message.
2381  **
2382  ** Copy TEMP register to LASTP in header.
2383  */
2384  SCR_COPY (4),
2385  RADDR (temp),
2386  NADDR (header.lastp),
2387  /*
2388  ** When we terminate the cycle by clearing ACK,
2389  ** the target may disconnect immediately.
2390  **
2391  ** We don't want to be told of an
2392  ** "unexpected disconnect",
2393  ** so we disable this feature.
2394  */
2395  SCR_REG_REG (scntl2, SCR_AND, 0x7f),
2396  0,
2397  /*
2398  ** Terminate cycle ...
2399  */
2401  0,
2402  /*
2403  ** ... and wait for the disconnect.
2404  */
2405  SCR_WAIT_DISC,
2406  0,
2407 }/*-------------------------< CLEANUP_OK >----------------*/,{
2408  /*
2409  ** Save host status to header.
2410  */
2411  SCR_COPY (4),
2412  RADDR (scr0),
2413  NADDR (header.status),
2414  /*
2415  ** and copy back the header to the ccb.
2416  */
2417  SCR_COPY_F (4),
2418  RADDR (dsa),
2419  PADDR (cleanup0),
2420  /*
2421  ** Flush script prefetch if required
2422  */
2424  SCR_COPY (sizeof (struct head)),
2425  NADDR (header),
2426 }/*-------------------------< CLEANUP0 >--------------------*/,{
2427  0,
2428 }/*-------------------------< SIGNAL >----------------------*/,{
2429  /*
2430  ** if job not completed ...
2431  */
2432  SCR_FROM_REG (HS_REG),
2433  0,
2434  /*
2435  ** ... start the next command.
2436  */
2438  PADDR(start),
2439  /*
2440  ** If command resulted in not GOOD status,
2441  ** call the C code if needed.
2442  */
2443  SCR_FROM_REG (SS_REG),
2444  0,
2445  SCR_CALL ^ IFFALSE (DATA (S_GOOD)),
2446  PADDRH (bad_status),
2447 
2448 #ifndef SCSI_NCR_CCB_DONE_SUPPORT
2449 
2450  /*
2451  ** ... signal completion to the host
2452  */
2453  SCR_INT,
2454  SIR_INTFLY,
2455  /*
2456  ** Auf zu neuen Schandtaten!
2457  */
2458  SCR_JUMP,
2459  PADDR(start),
2460 
2461 #else /* defined SCSI_NCR_CCB_DONE_SUPPORT */
2462 
2463  /*
2464  ** ... signal completion to the host
2465  */
2466  SCR_JUMP,
2467 }/*------------------------< DONE_POS >---------------------*/,{
2468  PADDRH (done_queue),
2469 }/*------------------------< DONE_PLUG >--------------------*/,{
2470  SCR_INT,
2472 }/*------------------------< DONE_END >---------------------*/,{
2473  SCR_INT,
2474  SIR_INTFLY,
2475  SCR_COPY (4),
2476  RADDR (temp),
2477  PADDR (done_pos),
2478  SCR_JUMP,
2479  PADDR (start),
2480 
2481 #endif /* SCSI_NCR_CCB_DONE_SUPPORT */
2482 
2483 }/*-------------------------< SAVE_DP >------------------*/,{
2484  /*
2485  ** SAVE_DP message:
2486  ** Copy TEMP register to SAVEP in header.
2487  */
2488  SCR_COPY (4),
2489  RADDR (temp),
2490  NADDR (header.savep),
2491  SCR_CLR (SCR_ACK),
2492  0,
2493  SCR_JUMP,
2494  PADDR (dispatch),
2495 }/*-------------------------< RESTORE_DP >---------------*/,{
2496  /*
2497  ** RESTORE_DP message:
2498  ** Copy SAVEP in header to TEMP register.
2499  */
2500  SCR_COPY (4),
2501  NADDR (header.savep),
2502  RADDR (temp),
2503  SCR_JUMP,
2504  PADDR (clrack),
2505 
2506 }/*-------------------------< DISCONNECT >---------------*/,{
2507  /*
2508  ** DISCONNECTing ...
2509  **
2510  ** disable the "unexpected disconnect" feature,
2511  ** and remove the ACK signal.
2512  */
2513  SCR_REG_REG (scntl2, SCR_AND, 0x7f),
2514  0,
2516  0,
2517  /*
2518  ** Wait for the disconnect.
2519  */
2520  SCR_WAIT_DISC,
2521  0,
2522  /*
2523  ** Status is: DISCONNECTED.
2524  */
2526  0,
2527  SCR_JUMP,
2528  PADDR (cleanup_ok),
2529 
2530 }/*-------------------------< MSG_OUT >-------------------*/,{
2531  /*
2532  ** The target requests a message.
2533  */
2534  SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
2535  NADDR (msgout),
2536  SCR_COPY (1),
2537  NADDR (msgout),
2538  NADDR (lastmsg),
2539  /*
2540  ** If it was no ABORT message ...
2541  */
2543  PADDRH (msg_out_abort),
2544  /*
2545  ** ... wait for the next phase
2546  ** if it's a message out, send it again, ...
2547  */
2549  PADDR (msg_out),
2550 }/*-------------------------< MSG_OUT_DONE >--------------*/,{
2551  /*
2552  ** ... else clear the message ...
2553  */
2554  SCR_LOAD_REG (scratcha, NOP),
2555  0,
2556  SCR_COPY (4),
2557  RADDR (scratcha),
2558  NADDR (msgout),
2559  /*
2560  ** ... and process the next phase
2561  */
2562  SCR_JUMP,
2563  PADDR (dispatch),
2564 }/*-------------------------< IDLE >------------------------*/,{
2565  /*
2566  ** Nothing to do?
2567  ** Wait for reselect.
2568  ** This NOP will be patched with LED OFF
2569  ** SCR_REG_REG (gpreg, SCR_OR, 0x01)
2570  */
2571  SCR_NO_OP,
2572  0,
2573 }/*-------------------------< RESELECT >--------------------*/,{
2574  /*
2575  ** make the DSA invalid.
2576  */
2577  SCR_LOAD_REG (dsa, 0xff),
2578  0,
2579  SCR_CLR (SCR_TRG),
2580  0,
2582  0,
2583  /*
2584  ** Sleep waiting for a reselection.
2585  ** If SIGP is set, special treatment.
2586  **
2587  ** Zu allem bereit ..
2588  */
2590  PADDR(start),
2591 }/*-------------------------< RESELECTED >------------------*/,{
2592  /*
2593  ** This NOP will be patched with LED ON
2594  ** SCR_REG_REG (gpreg, SCR_AND, 0xfe)
2595  */
2596  SCR_NO_OP,
2597  0,
2598  /*
2599  ** ... zu nichts zu gebrauchen ?
2600  **
2601  ** load the target id into the SFBR
2602  ** and jump to the control block.
2603  **
2604  ** Look at the declarations of
2605  ** - struct ncb
2606  ** - struct tcb
2607  ** - struct lcb
2608  ** - struct ccb
2609  ** to understand what's going on.
2610  */
2611  SCR_REG_SFBR (ssid, SCR_AND, 0x8F),
2612  0,
2613  SCR_TO_REG (sdid),
2614  0,
2615  SCR_JUMP,
2616  NADDR (jump_tcb),
2617 
2618 }/*-------------------------< RESEL_DSA >-------------------*/,{
2619  /*
2620  ** Ack the IDENTIFY or TAG previously received.
2621  */
2622  SCR_CLR (SCR_ACK),
2623  0,
2624  /*
2625  ** The ncr doesn't have an indirect load
2626  ** or store command. So we have to
2627  ** copy part of the control block to a
2628  ** fixed place, where we can access it.
2629  **
2630  ** We patch the address part of a
2631  ** COPY command with the DSA-register.
2632  */
2633  SCR_COPY_F (4),
2634  RADDR (dsa),
2635  PADDR (loadpos1),
2636  /*
2637  ** Flush script prefetch if required
2638  */
2640  /*
2641  ** then we do the actual copy.
2642  */
2643  SCR_COPY (sizeof (struct head)),
2644  /*
2645  ** continued after the next label ...
2646  */
2647 
2648 }/*-------------------------< LOADPOS1 >-------------------*/,{
2649  0,
2650  NADDR (header),
2651  /*
2652  ** The DSA contains the data structure address.
2653  */
2654  SCR_JUMP,
2655  PADDR (prepare),
2656 
2657 }/*-------------------------< RESEL_LUN >-------------------*/,{
2658  /*
2659  ** come back to this point
2660  ** to get an IDENTIFY message
2661  ** Wait for a msg_in phase.
2662  */
2665  /*
2666  ** message phase.
2667  ** Read the data directly from the BUS DATA lines.
2668  ** This helps to support very old SCSI devices that
2669  ** may reselect without sending an IDENTIFY.
2670  */
2671  SCR_FROM_REG (sbdl),
2672  0,
2673  /*
2674  ** It should be an Identify message.
2675  */
2676  SCR_RETURN,
2677  0,
2678 }/*-------------------------< RESEL_TAG >-------------------*/,{
2679  /*
2680  ** Read IDENTIFY + SIMPLE + TAG using a single MOVE.
2681  ** Aggressive optimization, is'nt it?
2682  ** No need to test the SIMPLE TAG message, since the
2683  ** driver only supports conformant devices for tags. ;-)
2684  */
2685  SCR_MOVE_ABS (3) ^ SCR_MSG_IN,
2686  NADDR (msgin),
2687  /*
2688  ** Read the TAG from the SIDL.
2689  ** Still an aggressive optimization. ;-)
2690  ** Compute the CCB indirect jump address which
2691  ** is (#TAG*2 & 0xfc) due to tag numbering using
2692  ** 1,3,5..MAXTAGS*2+1 actual values.
2693  */
2694  SCR_REG_SFBR (sidl, SCR_SHL, 0),
2695  0,
2696  SCR_SFBR_REG (temp, SCR_AND, 0xfc),
2697  0,
2698 }/*-------------------------< JUMP_TO_NEXUS >-------------------*/,{
2699  SCR_COPY_F (4),
2700  RADDR (temp),
2702  /*
2703  ** Flush script prefetch if required
2704  */
2706  SCR_COPY (4),
2707 }/*-------------------------< NEXUS_INDIRECT >-------------------*/,{
2708  0,
2709  RADDR (temp),
2710  SCR_RETURN,
2711  0,
2712 }/*-------------------------< RESEL_NOTAG >-------------------*/,{
2713  /*
2714  ** No tag expected.
2715  ** Read an throw away the IDENTIFY.
2716  */
2717  SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2718  NADDR (msgin),
2719  SCR_JUMP,
2720  PADDR (jump_to_nexus),
2721 }/*-------------------------< DATA_IN >--------------------*/,{
2722 /*
2723 ** Because the size depends on the
2724 ** #define MAX_SCATTERL parameter,
2725 ** it is filled in at runtime.
2726 **
2727 ** ##===========< i=0; i<MAX_SCATTERL >=========
2728 ** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)),
2729 ** || PADDR (dispatch),
2730 ** || SCR_MOVE_TBL ^ SCR_DATA_IN,
2731 ** || offsetof (struct dsb, data[ i]),
2732 ** ##==========================================
2733 **
2734 **---------------------------------------------------------
2735 */
2736 0
2737 }/*-------------------------< DATA_IN2 >-------------------*/,{
2738  SCR_CALL,
2739  PADDR (dispatch),
2740  SCR_JUMP,
2741  PADDR (no_data),
2742 }/*-------------------------< DATA_OUT >--------------------*/,{
2743 /*
2744 ** Because the size depends on the
2745 ** #define MAX_SCATTERL parameter,
2746 ** it is filled in at runtime.
2747 **
2748 ** ##===========< i=0; i<MAX_SCATTERL >=========
2749 ** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT)),
2750 ** || PADDR (dispatch),
2751 ** || SCR_MOVE_TBL ^ SCR_DATA_OUT,
2752 ** || offsetof (struct dsb, data[ i]),
2753 ** ##==========================================
2754 **
2755 **---------------------------------------------------------
2756 */
2757 0
2758 }/*-------------------------< DATA_OUT2 >-------------------*/,{
2759  SCR_CALL,
2760  PADDR (dispatch),
2761  SCR_JUMP,
2762  PADDR (no_data),
2763 }/*--------------------------------------------------------*/
2764 };
2765 
2766 static struct scripth scripth0 __initdata = {
2767 /*-------------------------< TRYLOOP >---------------------*/{
2768 /*
2769 ** Start the next entry.
2770 ** Called addresses point to the launch script in the CCB.
2771 ** They are patched by the main processor.
2772 **
2773 ** Because the size depends on the
2774 ** #define MAX_START parameter, it is filled
2775 ** in at runtime.
2776 **
2777 **-----------------------------------------------------------
2778 **
2779 ** ##===========< I=0; i<MAX_START >===========
2780 ** || SCR_CALL,
2781 ** || PADDR (idle),
2782 ** ##==========================================
2783 **
2784 **-----------------------------------------------------------
2785 */
2786 0
2787 }/*------------------------< TRYLOOP2 >---------------------*/,{
2788  SCR_JUMP,
2789  PADDRH(tryloop),
2790 
2791 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
2792 
2793 }/*------------------------< DONE_QUEUE >-------------------*/,{
2794 /*
2795 ** Copy the CCB address to the next done entry.
2796 ** Because the size depends on the
2797 ** #define MAX_DONE parameter, it is filled
2798 ** in at runtime.
2799 **
2800 **-----------------------------------------------------------
2801 **
2802 ** ##===========< I=0; i<MAX_DONE >===========
2803 ** || SCR_COPY (sizeof(struct ccb *),
2804 ** || NADDR (header.cp),
2805 ** || NADDR (ccb_done[i]),
2806 ** || SCR_CALL,
2807 ** || PADDR (done_end),
2808 ** ##==========================================
2809 **
2810 **-----------------------------------------------------------
2811 */
2812 0
2813 }/*------------------------< DONE_QUEUE2 >------------------*/,{
2814  SCR_JUMP,
2815  PADDRH (done_queue),
2816 
2817 #endif /* SCSI_NCR_CCB_DONE_SUPPORT */
2818 }/*------------------------< SELECT_NO_ATN >-----------------*/,{
2819  /*
2820  ** Set Initiator mode.
2821  ** And try to select this target without ATN.
2822  */
2823 
2824  SCR_CLR (SCR_TRG),
2825  0,
2827  0,
2828  SCR_SEL_TBL ^ offsetof (struct dsb, select),
2829  PADDR (reselect),
2830  SCR_JUMP,
2831  PADDR (select2),
2832 
2833 }/*-------------------------< CANCEL >------------------------*/,{
2834 
2835  SCR_LOAD_REG (scratcha, HS_ABORTED),
2836  0,
2837  SCR_JUMPR,
2838  8,
2839 }/*-------------------------< SKIP >------------------------*/,{
2840  SCR_LOAD_REG (scratcha, 0),
2841  0,
2842  /*
2843  ** This entry has been canceled.
2844  ** Next time use the next slot.
2845  */
2846  SCR_COPY (4),
2847  RADDR (temp),
2848  PADDR (startpos),
2849  /*
2850  ** The ncr doesn't have an indirect load
2851  ** or store command. So we have to
2852  ** copy part of the control block to a
2853  ** fixed place, where we can access it.
2854  **
2855  ** We patch the address part of a
2856  ** COPY command with the DSA-register.
2857  */
2858  SCR_COPY_F (4),
2859  RADDR (dsa),
2860  PADDRH (skip2),
2861  /*
2862  ** Flush script prefetch if required
2863  */
2865  /*
2866  ** then we do the actual copy.
2867  */
2868  SCR_COPY (sizeof (struct head)),
2869  /*
2870  ** continued after the next label ...
2871  */
2872 }/*-------------------------< SKIP2 >---------------------*/,{
2873  0,
2874  NADDR (header),
2875  /*
2876  ** Initialize the status registers
2877  */
2878  SCR_COPY (4),
2879  NADDR (header.status),
2880  RADDR (scr0),
2881  /*
2882  ** Force host status.
2883  */
2884  SCR_FROM_REG (scratcha),
2885  0,
2886  SCR_JUMPR ^ IFFALSE (MASK (0, HS_DONEMASK)),
2887  16,
2889  0,
2890  SCR_JUMPR,
2891  8,
2892  SCR_TO_REG (HS_REG),
2893  0,
2895  0,
2896  SCR_JUMP,
2897  PADDR (cleanup_ok),
2898 
2899 },/*-------------------------< PAR_ERR_DATA_IN >---------------*/{
2900  /*
2901  ** Ignore all data in byte, until next phase
2902  */
2905  SCR_MOVE_ABS (1) ^ SCR_DATA_IN,
2906  NADDR (scratch),
2907  SCR_JUMPR,
2908  -24,
2909 },/*-------------------------< PAR_ERR_OTHER >------------------*/{
2910  /*
2911  ** count it.
2912  */
2913  SCR_REG_REG (PS_REG, SCR_ADD, 0x01),
2914  0,
2915  /*
2916  ** jump to dispatcher.
2917  */
2918  SCR_JUMP,
2919  PADDR (dispatch),
2920 }/*-------------------------< MSG_REJECT >---------------*/,{
2921  /*
2922  ** If a negotiation was in progress,
2923  ** negotiation failed.
2924  ** Otherwise, let the C code print
2925  ** some message.
2926  */
2927  SCR_FROM_REG (HS_REG),
2928  0,
2933  SCR_JUMP,
2934  PADDR (clrack),
2935 
2936 }/*-------------------------< MSG_IGN_RESIDUE >----------*/,{
2937  /*
2938  ** Terminate cycle
2939  */
2940  SCR_CLR (SCR_ACK),
2941  0,
2943  PADDR (dispatch),
2944  /*
2945  ** get residue size.
2946  */
2947  SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2948  NADDR (msgin[1]),
2949  /*
2950  ** Size is 0 .. ignore message.
2951  */
2952  SCR_JUMP ^ IFTRUE (DATA (0)),
2953  PADDR (clrack),
2954  /*
2955  ** Size is not 1 .. have to interrupt.
2956  */
2957  SCR_JUMPR ^ IFFALSE (DATA (1)),
2958  40,
2959  /*
2960  ** Check for residue byte in swide register
2961  */
2962  SCR_FROM_REG (scntl2),
2963  0,
2964  SCR_JUMPR ^ IFFALSE (MASK (WSR, WSR)),
2965  16,
2966  /*
2967  ** There IS data in the swide register.
2968  ** Discard it.
2969  */
2970  SCR_REG_REG (scntl2, SCR_OR, WSR),
2971  0,
2972  SCR_JUMP,
2973  PADDR (clrack),
2974  /*
2975  ** Load again the size to the sfbr register.
2976  */
2977  SCR_FROM_REG (scratcha),
2978  0,
2979  SCR_INT,
2981  SCR_JUMP,
2982  PADDR (clrack),
2983 
2984 }/*-------------------------< MSG_EXTENDED >-------------*/,{
2985  /*
2986  ** Terminate cycle
2987  */
2988  SCR_CLR (SCR_ACK),
2989  0,
2991  PADDR (dispatch),
2992  /*
2993  ** get length.
2994  */
2995  SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
2996  NADDR (msgin[1]),
2997  /*
2998  */
2999  SCR_JUMP ^ IFTRUE (DATA (3)),
3000  PADDRH (msg_ext_3),
3001  SCR_JUMP ^ IFFALSE (DATA (2)),
3002  PADDR (msg_bad),
3003 }/*-------------------------< MSG_EXT_2 >----------------*/,{
3004  SCR_CLR (SCR_ACK),
3005  0,
3007  PADDR (dispatch),
3008  /*
3009  ** get extended message code.
3010  */
3011  SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3012  NADDR (msgin[2]),
3014  PADDRH (msg_wdtr),
3015  /*
3016  ** unknown extended message
3017  */
3018  SCR_JUMP,
3019  PADDR (msg_bad)
3020 }/*-------------------------< MSG_WDTR >-----------------*/,{
3021  SCR_CLR (SCR_ACK),
3022  0,
3024  PADDR (dispatch),
3025  /*
3026  ** get data bus width
3027  */
3028  SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3029  NADDR (msgin[3]),
3030  /*
3031  ** let the host do the real work.
3032  */
3033  SCR_INT,
3034  SIR_NEGO_WIDE,
3035  /*
3036  ** let the target fetch our answer.
3037  */
3038  SCR_SET (SCR_ATN),
3039  0,
3040  SCR_CLR (SCR_ACK),
3041  0,
3044 
3045 }/*-------------------------< SEND_WDTR >----------------*/,{
3046  /*
3047  ** Send the EXTENDED_WDTR
3048  */
3049  SCR_MOVE_ABS (4) ^ SCR_MSG_OUT,
3050  NADDR (msgout),
3051  SCR_COPY (1),
3052  NADDR (msgout),
3053  NADDR (lastmsg),
3054  SCR_JUMP,
3055  PADDR (msg_out_done),
3056 
3057 }/*-------------------------< MSG_EXT_3 >----------------*/,{
3058  SCR_CLR (SCR_ACK),
3059  0,
3061  PADDR (dispatch),
3062  /*
3063  ** get extended message code.
3064  */
3065  SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3066  NADDR (msgin[2]),
3068  PADDRH (msg_sdtr),
3069  /*
3070  ** unknown extended message
3071  */
3072  SCR_JUMP,
3073  PADDR (msg_bad)
3074 
3075 }/*-------------------------< MSG_SDTR >-----------------*/,{
3076  SCR_CLR (SCR_ACK),
3077  0,
3079  PADDR (dispatch),
3080  /*
3081  ** get period and offset
3082  */
3083  SCR_MOVE_ABS (2) ^ SCR_MSG_IN,
3084  NADDR (msgin[3]),
3085  /*
3086  ** let the host do the real work.
3087  */
3088  SCR_INT,
3089  SIR_NEGO_SYNC,
3090  /*
3091  ** let the target fetch our answer.
3092  */
3093  SCR_SET (SCR_ATN),
3094  0,
3095  SCR_CLR (SCR_ACK),
3096  0,
3099 
3100 }/*-------------------------< SEND_SDTR >-------------*/,{
3101  /*
3102  ** Send the EXTENDED_SDTR
3103  */
3104  SCR_MOVE_ABS (5) ^ SCR_MSG_OUT,
3105  NADDR (msgout),
3106  SCR_COPY (1),
3107  NADDR (msgout),
3108  NADDR (lastmsg),
3109  SCR_JUMP,
3110  PADDR (msg_out_done),
3111 
3112 }/*-------------------------< NEGO_BAD_PHASE >------------*/,{
3113  SCR_INT,
3115  SCR_JUMP,
3116  PADDR (dispatch),
3117 
3118 }/*-------------------------< MSG_OUT_ABORT >-------------*/,{
3119  /*
3120  ** After ABORT message,
3121  **
3122  ** expect an immediate disconnect, ...
3123  */
3124  SCR_REG_REG (scntl2, SCR_AND, 0x7f),
3125  0,
3127  0,
3128  SCR_WAIT_DISC,
3129  0,
3130  /*
3131  ** ... and set the status to "ABORTED"
3132  */
3134  0,
3135  SCR_JUMP,
3136  PADDR (cleanup),
3137 
3138 }/*-------------------------< HDATA_IN >-------------------*/,{
3139 /*
3140 ** Because the size depends on the
3141 ** #define MAX_SCATTERH parameter,
3142 ** it is filled in at runtime.
3143 **
3144 ** ##==< i=MAX_SCATTERL; i<MAX_SCATTERL+MAX_SCATTERH >==
3145 ** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN)),
3146 ** || PADDR (dispatch),
3147 ** || SCR_MOVE_TBL ^ SCR_DATA_IN,
3148 ** || offsetof (struct dsb, data[ i]),
3149 ** ##===================================================
3150 **
3151 **---------------------------------------------------------
3152 */
3153 0
3154 }/*-------------------------< HDATA_IN2 >------------------*/,{
3155  SCR_JUMP,
3156  PADDR (data_in),
3157 
3158 }/*-------------------------< HDATA_OUT >-------------------*/,{
3159 /*
3160 ** Because the size depends on the
3161 ** #define MAX_SCATTERH parameter,
3162 ** it is filled in at runtime.
3163 **
3164 ** ##==< i=MAX_SCATTERL; i<MAX_SCATTERL+MAX_SCATTERH >==
3165 ** || SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT)),
3166 ** || PADDR (dispatch),
3167 ** || SCR_MOVE_TBL ^ SCR_DATA_OUT,
3168 ** || offsetof (struct dsb, data[ i]),
3169 ** ##===================================================
3170 **
3171 **---------------------------------------------------------
3172 */
3173 0
3174 }/*-------------------------< HDATA_OUT2 >------------------*/,{
3175  SCR_JUMP,
3176  PADDR (data_out),
3177 
3178 }/*-------------------------< RESET >----------------------*/,{
3179  /*
3180  ** Send a TARGET_RESET message if bad IDENTIFY
3181  ** received on reselection.
3182  */
3183  SCR_LOAD_REG (scratcha, ABORT_TASK),
3184  0,
3185  SCR_JUMP,
3186  PADDRH (abort_resel),
3187 }/*-------------------------< ABORTTAG >-------------------*/,{
3188  /*
3189  ** Abort a wrong tag received on reselection.
3190  */
3191  SCR_LOAD_REG (scratcha, ABORT_TASK),
3192  0,
3193  SCR_JUMP,
3194  PADDRH (abort_resel),
3195 }/*-------------------------< ABORT >----------------------*/,{
3196  /*
3197  ** Abort a reselection when no active CCB.
3198  */
3199  SCR_LOAD_REG (scratcha, ABORT_TASK_SET),
3200  0,
3201 }/*-------------------------< ABORT_RESEL >----------------*/,{
3202  SCR_COPY (1),
3203  RADDR (scratcha),
3204  NADDR (msgout),
3205  SCR_SET (SCR_ATN),
3206  0,
3207  SCR_CLR (SCR_ACK),
3208  0,
3209  /*
3210  ** and send it.
3211  ** we expect an immediate disconnect
3212  */
3213  SCR_REG_REG (scntl2, SCR_AND, 0x7f),
3214  0,
3215  SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
3216  NADDR (msgout),
3217  SCR_COPY (1),
3218  NADDR (msgout),
3219  NADDR (lastmsg),
3221  0,
3222  SCR_WAIT_DISC,
3223  0,
3224  SCR_JUMP,
3225  PADDR (start),
3226 }/*-------------------------< RESEND_IDENT >-------------------*/,{
3227  /*
3228  ** The target stays in MSG OUT phase after having acked
3229  ** Identify [+ Tag [+ Extended message ]]. Targets shall
3230  ** behave this way on parity error.
3231  ** We must send it again all the messages.
3232  */
3233  SCR_SET (SCR_ATN), /* Shall be asserted 2 deskew delays before the */
3234  0, /* 1rst ACK = 90 ns. Hope the NCR is'nt too fast */
3235  SCR_JUMP,
3236  PADDR (send_ident),
3237 }/*-------------------------< CLRATN_GO_ON >-------------------*/,{
3238  SCR_CLR (SCR_ATN),
3239  0,
3240  SCR_JUMP,
3241 }/*-------------------------< NXTDSP_GO_ON >-------------------*/,{
3242  0,
3243 }/*-------------------------< SDATA_IN >-------------------*/,{
3245  PADDR (dispatch),
3247  offsetof (struct dsb, sense),
3248  SCR_CALL,
3249  PADDR (dispatch),
3250  SCR_JUMP,
3251  PADDR (no_data),
3252 }/*-------------------------< DATA_IO >--------------------*/,{
3253  /*
3254  ** We jump here if the data direction was unknown at the
3255  ** time we had to queue the command to the scripts processor.
3256  ** Pointers had been set as follow in this situation:
3257  ** savep --> DATA_IO
3258  ** lastp --> start pointer when DATA_IN
3259  ** goalp --> goal pointer when DATA_IN
3260  ** wlastp --> start pointer when DATA_OUT
3261  ** wgoalp --> goal pointer when DATA_OUT
3262  ** This script sets savep/lastp/goalp according to the
3263  ** direction chosen by the target.
3264  */
3266  32,
3267  /*
3268  ** Direction is DATA IN.
3269  ** Warning: we jump here, even when phase is DATA OUT.
3270  */
3271  SCR_COPY (4),
3272  NADDR (header.lastp),
3273  NADDR (header.savep),
3274 
3275  /*
3276  ** Jump to the SCRIPTS according to actual direction.
3277  */
3278  SCR_COPY (4),
3279  NADDR (header.savep),
3280  RADDR (temp),
3281  SCR_RETURN,
3282  0,
3283  /*
3284  ** Direction is DATA OUT.
3285  */
3286  SCR_COPY (4),
3287  NADDR (header.wlastp),
3288  NADDR (header.lastp),
3289  SCR_COPY (4),
3290  NADDR (header.wgoalp),
3291  NADDR (header.goalp),
3292  SCR_JUMPR,
3293  -64,
3294 }/*-------------------------< BAD_IDENTIFY >---------------*/,{
3295  /*
3296  ** If message phase but not an IDENTIFY,
3297  ** get some help from the C code.
3298  ** Old SCSI device may behave so.
3299  */
3300  SCR_JUMPR ^ IFTRUE (MASK (0x80, 0x80)),
3301  16,
3302  SCR_INT,
3304  SCR_JUMP,
3305  PADDRH (reset),
3306  /*
3307  ** Message is an IDENTIFY, but lun is unknown.
3308  ** Read the message, since we got it directly
3309  ** from the SCSI BUS data lines.
3310  ** Signal problem to C code for logging the event.
3311  ** Send an ABORT_TASK_SET to clear all pending tasks.
3312  */
3313  SCR_INT,
3315  SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3316  NADDR (msgin),
3317  SCR_JUMP,
3318  PADDRH (abort),
3319 }/*-------------------------< BAD_I_T_L >------------------*/,{
3320  /*
3321  ** We donnot have a task for that I_T_L.
3322  ** Signal problem to C code for logging the event.
3323  ** Send an ABORT_TASK_SET message.
3324  */
3325  SCR_INT,
3327  SCR_JUMP,
3328  PADDRH (abort),
3329 }/*-------------------------< BAD_I_T_L_Q >----------------*/,{
3330  /*
3331  ** We donnot have a task that matches the tag.
3332  ** Signal problem to C code for logging the event.
3333  ** Send an ABORT_TASK message.
3334  */
3335  SCR_INT,
3337  SCR_JUMP,
3338  PADDRH (aborttag),
3339 }/*-------------------------< BAD_TARGET >-----------------*/,{
3340  /*
3341  ** We donnot know the target that reselected us.
3342  ** Grab the first message if any (IDENTIFY).
3343  ** Signal problem to C code for logging the event.
3344  ** TARGET_RESET message.
3345  */
3346  SCR_INT,
3349  8,
3350  SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
3351  NADDR (msgin),
3352  SCR_JUMP,
3353  PADDRH (reset),
3354 }/*-------------------------< BAD_STATUS >-----------------*/,{
3355  /*
3356  ** If command resulted in either QUEUE FULL,
3357  ** CHECK CONDITION or COMMAND TERMINATED,
3358  ** call the C code.
3359  */
3366  SCR_RETURN,
3367  0,
3368 }/*-------------------------< START_RAM >-------------------*/,{
3369  /*
3370  ** Load the script into on-chip RAM,
3371  ** and jump to start point.
3372  */
3373  SCR_COPY_F (4),
3374  RADDR (scratcha),
3375  PADDRH (start_ram0),
3376  /*
3377  ** Flush script prefetch if required
3378  */
3380  SCR_COPY (sizeof (struct script)),
3381 }/*-------------------------< START_RAM0 >--------------------*/,{
3382  0,
3383  PADDR (start),
3384  SCR_JUMP,
3385  PADDR (start),
3386 }/*-------------------------< STO_RESTART >-------------------*/,{
3387  /*
3388  **
3389  ** Repair start queue (e.g. next time use the next slot)
3390  ** and jump to start point.
3391  */
3392  SCR_COPY (4),
3393  RADDR (temp),
3394  PADDR (startpos),
3395  SCR_JUMP,
3396  PADDR (start),
3397 }/*-------------------------< WAIT_DMA >-------------------*/,{
3398  /*
3399  ** For HP Zalon/53c720 systems, the Zalon interface
3400  ** between CPU and 53c720 does prefetches, which causes
3401  ** problems with self modifying scripts. The problem
3402  ** is overcome by calling a dummy subroutine after each
3403  ** modification, to force a refetch of the script on
3404  ** return from the subroutine.
3405  */
3406  SCR_RETURN,
3407  0,
3408 }/*-------------------------< SNOOPTEST >-------------------*/,{
3409  /*
3410  ** Read the variable.
3411  */
3412  SCR_COPY (4),
3413  NADDR(ncr_cache),
3414  RADDR (scratcha),
3415  /*
3416  ** Write the variable.
3417  */
3418  SCR_COPY (4),
3419  RADDR (temp),
3420  NADDR(ncr_cache),
3421  /*
3422  ** Read back the variable.
3423  */
3424  SCR_COPY (4),
3425  NADDR(ncr_cache),
3426  RADDR (temp),
3427 }/*-------------------------< SNOOPEND >-------------------*/,{
3428  /*
3429  ** And stop.
3430  */
3431  SCR_INT,
3432  99,
3433 }/*--------------------------------------------------------*/
3434 };
3435 
3436 /*==========================================================
3437 **
3438 **
3439 ** Fill in #define dependent parts of the script
3440 **
3441 **
3442 **==========================================================
3443 */
3444 
3445 void __init ncr_script_fill (struct script * scr, struct scripth * scrh)
3446 {
3447  int i;
3448  ncrcmd *p;
3449 
3450  p = scrh->tryloop;
3451  for (i=0; i<MAX_START; i++) {
3452  *p++ =SCR_CALL;
3453  *p++ =PADDR (idle);
3454  }
3455 
3456  BUG_ON((u_long)p != (u_long)&scrh->tryloop + sizeof (scrh->tryloop));
3457 
3458 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
3459 
3460  p = scrh->done_queue;
3461  for (i = 0; i<MAX_DONE; i++) {
3462  *p++ =SCR_COPY (sizeof(struct ccb *));
3463  *p++ =NADDR (header.cp);
3464  *p++ =NADDR (ccb_done[i]);
3465  *p++ =SCR_CALL;
3466  *p++ =PADDR (done_end);
3467  }
3468 
3469  BUG_ON((u_long)p != (u_long)&scrh->done_queue+sizeof(scrh->done_queue));
3470 
3471 #endif /* SCSI_NCR_CCB_DONE_SUPPORT */
3472 
3473  p = scrh->hdata_in;
3474  for (i=0; i<MAX_SCATTERH; i++) {
3475  *p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN));
3476  *p++ =PADDR (dispatch);
3477  *p++ =SCR_MOVE_TBL ^ SCR_DATA_IN;
3478  *p++ =offsetof (struct dsb, data[i]);
3479  }
3480 
3481  BUG_ON((u_long)p != (u_long)&scrh->hdata_in + sizeof (scrh->hdata_in));
3482 
3483  p = scr->data_in;
3484  for (i=MAX_SCATTERH; i<MAX_SCATTERH+MAX_SCATTERL; i++) {
3485  *p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_IN));
3486  *p++ =PADDR (dispatch);
3487  *p++ =SCR_MOVE_TBL ^ SCR_DATA_IN;
3488  *p++ =offsetof (struct dsb, data[i]);
3489  }
3490 
3491  BUG_ON((u_long)p != (u_long)&scr->data_in + sizeof (scr->data_in));
3492 
3493  p = scrh->hdata_out;
3494  for (i=0; i<MAX_SCATTERH; i++) {
3495  *p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT));
3496  *p++ =PADDR (dispatch);
3497  *p++ =SCR_MOVE_TBL ^ SCR_DATA_OUT;
3498  *p++ =offsetof (struct dsb, data[i]);
3499  }
3500 
3501  BUG_ON((u_long)p != (u_long)&scrh->hdata_out + sizeof (scrh->hdata_out));
3502 
3503  p = scr->data_out;
3504  for (i=MAX_SCATTERH; i<MAX_SCATTERH+MAX_SCATTERL; i++) {
3505  *p++ =SCR_CALL ^ IFFALSE (WHEN (SCR_DATA_OUT));
3506  *p++ =PADDR (dispatch);
3507  *p++ =SCR_MOVE_TBL ^ SCR_DATA_OUT;
3508  *p++ =offsetof (struct dsb, data[i]);
3509  }
3510 
3511  BUG_ON((u_long) p != (u_long)&scr->data_out + sizeof (scr->data_out));
3512 }
3513 
3514 /*==========================================================
3515 **
3516 **
3517 ** Copy and rebind a script.
3518 **
3519 **
3520 **==========================================================
3521 */
3522 
3523 static void __init
3524 ncr_script_copy_and_bind (struct ncb *np, ncrcmd *src, ncrcmd *dst, int len)
3525 {
3526  ncrcmd opcode, new, old, tmp1, tmp2;
3527  ncrcmd *start, *end;
3528  int relocs;
3529  int opchanged = 0;
3530 
3531  start = src;
3532  end = src + len/4;
3533 
3534  while (src < end) {
3535 
3536  opcode = *src++;
3537  *dst++ = cpu_to_scr(opcode);
3538 
3539  /*
3540  ** If we forget to change the length
3541  ** in struct script, a field will be
3542  ** padded with 0. This is an illegal
3543  ** command.
3544  */
3545 
3546  if (opcode == 0) {
3547  printk (KERN_ERR "%s: ERROR0 IN SCRIPT at %d.\n",
3548  ncr_name(np), (int) (src-start-1));
3549  mdelay(1000);
3550  }
3551 
3552  if (DEBUG_FLAGS & DEBUG_SCRIPT)
3553  printk (KERN_DEBUG "%p: <%x>\n",
3554  (src-1), (unsigned)opcode);
3555 
3556  /*
3557  ** We don't have to decode ALL commands
3558  */
3559  switch (opcode >> 28) {
3560 
3561  case 0xc:
3562  /*
3563  ** COPY has TWO arguments.
3564  */
3565  relocs = 2;
3566  tmp1 = src[0];
3567 #ifdef RELOC_KVAR
3568  if ((tmp1 & RELOC_MASK) == RELOC_KVAR)
3569  tmp1 = 0;
3570 #endif
3571  tmp2 = src[1];
3572 #ifdef RELOC_KVAR
3573  if ((tmp2 & RELOC_MASK) == RELOC_KVAR)
3574  tmp2 = 0;
3575 #endif
3576  if ((tmp1 ^ tmp2) & 3) {
3577  printk (KERN_ERR"%s: ERROR1 IN SCRIPT at %d.\n",
3578  ncr_name(np), (int) (src-start-1));
3579  mdelay(1000);
3580  }
3581  /*
3582  ** If PREFETCH feature not enabled, remove
3583  ** the NO FLUSH bit if present.
3584  */
3585  if ((opcode & SCR_NO_FLUSH) && !(np->features & FE_PFEN)) {
3586  dst[-1] = cpu_to_scr(opcode & ~SCR_NO_FLUSH);
3587  ++opchanged;
3588  }
3589  break;
3590 
3591  case 0x0:
3592  /*
3593  ** MOVE (absolute address)
3594  */
3595  relocs = 1;
3596  break;
3597 
3598  case 0x8:
3599  /*
3600  ** JUMP / CALL
3601  ** don't relocate if relative :-)
3602  */
3603  if (opcode & 0x00800000)
3604  relocs = 0;
3605  else
3606  relocs = 1;
3607  break;
3608 
3609  case 0x4:
3610  case 0x5:
3611  case 0x6:
3612  case 0x7:
3613  relocs = 1;
3614  break;
3615 
3616  default:
3617  relocs = 0;
3618  break;
3619  }
3620 
3621  if (relocs) {
3622  while (relocs--) {
3623  old = *src++;
3624 
3625  switch (old & RELOC_MASK) {
3626  case RELOC_REGISTER:
3627  new = (old & ~RELOC_MASK) + np->paddr;
3628  break;
3629  case RELOC_LABEL:
3630  new = (old & ~RELOC_MASK) + np->p_script;
3631  break;
3632  case RELOC_LABELH:
3633  new = (old & ~RELOC_MASK) + np->p_scripth;
3634  break;
3635  case RELOC_SOFTC:
3636  new = (old & ~RELOC_MASK) + np->p_ncb;
3637  break;
3638 #ifdef RELOC_KVAR
3639  case RELOC_KVAR:
3640  if (((old & ~RELOC_MASK) <
3641  SCRIPT_KVAR_FIRST) ||
3642  ((old & ~RELOC_MASK) >
3643  SCRIPT_KVAR_LAST))
3644  panic("ncr KVAR out of range");
3645  new = vtophys(script_kvars[old &
3646  ~RELOC_MASK]);
3647  break;
3648 #endif
3649  case 0:
3650  /* Don't relocate a 0 address. */
3651  if (old == 0) {
3652  new = old;
3653  break;
3654  }
3655  /* fall through */
3656  default:
3657  panic("ncr_script_copy_and_bind: weird relocation %x\n", old);
3658  break;
3659  }
3660 
3661  *dst++ = cpu_to_scr(new);
3662  }
3663  } else
3664  *dst++ = cpu_to_scr(*src++);
3665 
3666  }
3667 }
3668 
3669 /*
3670 ** Linux host data structure
3671 */
3672 
3673 struct host_data {
3674  struct ncb *ncb;
3675 };
3676 
3677 #define PRINT_ADDR(cmd, arg...) dev_info(&cmd->device->sdev_gendev , ## arg)
3678 
3679 static void ncr_print_msg(struct ccb *cp, char *label, u_char *msg)
3680 {
3681  PRINT_ADDR(cp->cmd, "%s: ", label);
3682 
3683  spi_print_msg(msg);
3684  printk("\n");
3685 }
3686 
3687 /*==========================================================
3688 **
3689 ** NCR chip clock divisor table.
3690 ** Divisors are multiplied by 10,000,000 in order to make
3691 ** calculations more simple.
3692 **
3693 **==========================================================
3694 */
3695 
3696 #define _5M 5000000
3697 static u_long div_10M[] =
3698  {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
3699 
3700 
3701 /*===============================================================
3702 **
3703 ** Prepare io register values used by ncr_init() according
3704 ** to selected and supported features.
3705 **
3706 ** NCR chips allow burst lengths of 2, 4, 8, 16, 32, 64, 128
3707 ** transfers. 32,64,128 are only supported by 875 and 895 chips.
3708 ** We use log base 2 (burst length) as internal code, with
3709 ** value 0 meaning "burst disabled".
3710 **
3711 **===============================================================
3712 */
3713 
3714 /*
3715  * Burst length from burst code.
3716  */
3717 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
3718 
3719 /*
3720  * Burst code from io register bits. Burst enable is ctest0 for c720
3721  */
3722 #define burst_code(dmode, ctest0) \
3723  (ctest0) & 0x80 ? 0 : (((dmode) & 0xc0) >> 6) + 1
3724 
3725 /*
3726  * Set initial io register bits from burst code.
3727  */
3728 static inline void ncr_init_burst(struct ncb *np, u_char bc)
3729 {
3730  u_char *be = &np->rv_ctest0;
3731  *be &= ~0x80;
3732  np->rv_dmode &= ~(0x3 << 6);
3733  np->rv_ctest5 &= ~0x4;
3734 
3735  if (!bc) {
3736  *be |= 0x80;
3737  } else {
3738  --bc;
3739  np->rv_dmode |= ((bc & 0x3) << 6);
3740  np->rv_ctest5 |= (bc & 0x4);
3741  }
3742 }
3743 
3744 static void __init ncr_prepare_setting(struct ncb *np)
3745 {
3746  u_char burst_max;
3747  u_long period;
3748  int i;
3749 
3750  /*
3751  ** Save assumed BIOS setting
3752  */
3753 
3754  np->sv_scntl0 = INB(nc_scntl0) & 0x0a;
3755  np->sv_scntl3 = INB(nc_scntl3) & 0x07;
3756  np->sv_dmode = INB(nc_dmode) & 0xce;
3757  np->sv_dcntl = INB(nc_dcntl) & 0xa8;
3758  np->sv_ctest0 = INB(nc_ctest0) & 0x84;
3759  np->sv_ctest3 = INB(nc_ctest3) & 0x01;
3760  np->sv_ctest4 = INB(nc_ctest4) & 0x80;
3761  np->sv_ctest5 = INB(nc_ctest5) & 0x24;
3762  np->sv_gpcntl = INB(nc_gpcntl);
3763  np->sv_stest2 = INB(nc_stest2) & 0x20;
3764  np->sv_stest4 = INB(nc_stest4);
3765 
3766  /*
3767  ** Wide ?
3768  */
3769 
3770  np->maxwide = (np->features & FE_WIDE)? 1 : 0;
3771 
3772  /*
3773  * Guess the frequency of the chip's clock.
3774  */
3775  if (np->features & FE_ULTRA)
3776  np->clock_khz = 80000;
3777  else
3778  np->clock_khz = 40000;
3779 
3780  /*
3781  * Get the clock multiplier factor.
3782  */
3783  if (np->features & FE_QUAD)
3784  np->multiplier = 4;
3785  else if (np->features & FE_DBLR)
3786  np->multiplier = 2;
3787  else
3788  np->multiplier = 1;
3789 
3790  /*
3791  * Measure SCSI clock frequency for chips
3792  * it may vary from assumed one.
3793  */
3794  if (np->features & FE_VARCLK)
3795  ncr_getclock(np, np->multiplier);
3796 
3797  /*
3798  * Divisor to be used for async (timer pre-scaler).
3799  */
3800  i = np->clock_divn - 1;
3801  while (--i >= 0) {
3802  if (10ul * SCSI_NCR_MIN_ASYNC * np->clock_khz > div_10M[i]) {
3803  ++i;
3804  break;
3805  }
3806  }
3807  np->rv_scntl3 = i+1;
3808 
3809  /*
3810  * Minimum synchronous period factor supported by the chip.
3811  * Btw, 'period' is in tenths of nanoseconds.
3812  */
3813 
3814  period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
3815  if (period <= 250) np->minsync = 10;
3816  else if (period <= 303) np->minsync = 11;
3817  else if (period <= 500) np->minsync = 12;
3818  else np->minsync = (period + 40 - 1) / 40;
3819 
3820  /*
3821  * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
3822  */
3823 
3824  if (np->minsync < 25 && !(np->features & FE_ULTRA))
3825  np->minsync = 25;
3826 
3827  /*
3828  * Maximum synchronous period factor supported by the chip.
3829  */
3830 
3831  period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
3832  np->maxsync = period > 2540 ? 254 : period / 10;
3833 
3834  /*
3835  ** Prepare initial value of other IO registers
3836  */
3837 #if defined SCSI_NCR_TRUST_BIOS_SETTING
3838  np->rv_scntl0 = np->sv_scntl0;
3839  np->rv_dmode = np->sv_dmode;
3840  np->rv_dcntl = np->sv_dcntl;
3841  np->rv_ctest0 = np->sv_ctest0;
3842  np->rv_ctest3 = np->sv_ctest3;
3843  np->rv_ctest4 = np->sv_ctest4;
3844  np->rv_ctest5 = np->sv_ctest5;
3845  burst_max = burst_code(np->sv_dmode, np->sv_ctest0);
3846 #else
3847 
3848  /*
3849  ** Select burst length (dwords)
3850  */
3851  burst_max = driver_setup.burst_max;
3852  if (burst_max == 255)
3853  burst_max = burst_code(np->sv_dmode, np->sv_ctest0);
3854  if (burst_max > 7)
3855  burst_max = 7;
3856  if (burst_max > np->maxburst)
3857  burst_max = np->maxburst;
3858 
3859  /*
3860  ** Select all supported special features
3861  */
3862  if (np->features & FE_ERL)
3863  np->rv_dmode |= ERL; /* Enable Read Line */
3864  if (np->features & FE_BOF)
3865  np->rv_dmode |= BOF; /* Burst Opcode Fetch */
3866  if (np->features & FE_ERMP)
3867  np->rv_dmode |= ERMP; /* Enable Read Multiple */
3868  if (np->features & FE_PFEN)
3869  np->rv_dcntl |= PFEN; /* Prefetch Enable */
3870  if (np->features & FE_CLSE)
3871  np->rv_dcntl |= CLSE; /* Cache Line Size Enable */
3872  if (np->features & FE_WRIE)
3873  np->rv_ctest3 |= WRIE; /* Write and Invalidate */
3874  if (np->features & FE_DFS)
3875  np->rv_ctest5 |= DFS; /* Dma Fifo Size */
3876  if (np->features & FE_MUX)
3877  np->rv_ctest4 |= MUX; /* Host bus multiplex mode */
3878  if (np->features & FE_EA)
3879  np->rv_dcntl |= EA; /* Enable ACK */
3880  if (np->features & FE_EHP)
3881  np->rv_ctest0 |= EHP; /* Even host parity */
3882 
3883  /*
3884  ** Select some other
3885  */
3886  if (driver_setup.master_parity)
3887  np->rv_ctest4 |= MPEE; /* Master parity checking */
3888  if (driver_setup.scsi_parity)
3889  np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */
3890 
3891  /*
3892  ** Get SCSI addr of host adapter (set by bios?).
3893  */
3894  if (np->myaddr == 255) {
3895  np->myaddr = INB(nc_scid) & 0x07;
3896  if (!np->myaddr)
3897  np->myaddr = SCSI_NCR_MYADDR;
3898  }
3899 
3900 #endif /* SCSI_NCR_TRUST_BIOS_SETTING */
3901 
3902  /*
3903  * Prepare initial io register bits for burst length
3904  */
3905  ncr_init_burst(np, burst_max);
3906 
3907  /*
3908  ** Set SCSI BUS mode.
3909  **
3910  ** - ULTRA2 chips (895/895A/896) report the current
3911  ** BUS mode through the STEST4 IO register.
3912  ** - For previous generation chips (825/825A/875),
3913  ** user has to tell us how to check against HVD,
3914  ** since a 100% safe algorithm is not possible.
3915  */
3916  np->scsi_mode = SMODE_SE;
3917  if (np->features & FE_DIFF) {
3918  switch(driver_setup.diff_support) {
3919  case 4: /* Trust previous settings if present, then GPIO3 */
3920  if (np->sv_scntl3) {
3921  if (np->sv_stest2 & 0x20)
3922  np->scsi_mode = SMODE_HVD;
3923  break;
3924  }
3925  case 3: /* SYMBIOS controllers report HVD through GPIO3 */
3926  if (INB(nc_gpreg) & 0x08)
3927  break;
3928  case 2: /* Set HVD unconditionally */
3929  np->scsi_mode = SMODE_HVD;
3930  case 1: /* Trust previous settings for HVD */
3931  if (np->sv_stest2 & 0x20)
3932  np->scsi_mode = SMODE_HVD;
3933  break;
3934  default:/* Don't care about HVD */
3935  break;
3936  }
3937  }
3938  if (np->scsi_mode == SMODE_HVD)
3939  np->rv_stest2 |= 0x20;
3940 
3941  /*
3942  ** Set LED support from SCRIPTS.
3943  ** Ignore this feature for boards known to use a
3944  ** specific GPIO wiring and for the 895A or 896
3945  ** that drive the LED directly.
3946  ** Also probe initial setting of GPIO0 as output.
3947  */
3948  if ((driver_setup.led_pin) &&
3949  !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
3950  np->features |= FE_LED0;
3951 
3952  /*
3953  ** Set irq mode.
3954  */
3955  switch(driver_setup.irqm & 3) {
3956  case 2:
3957  np->rv_dcntl |= IRQM;
3958  break;
3959  case 1:
3960  np->rv_dcntl |= (np->sv_dcntl & IRQM);
3961  break;
3962  default:
3963  break;
3964  }
3965 
3966  /*
3967  ** Configure targets according to driver setup.
3968  ** Allow to override sync, wide and NOSCAN from
3969  ** boot command line.
3970  */
3971  for (i = 0 ; i < MAX_TARGET ; i++) {
3972  struct tcb *tp = &np->target[i];
3973 
3974  tp->usrsync = driver_setup.default_sync;
3975  tp->usrwide = driver_setup.max_wide;
3976  tp->usrtags = MAX_TAGS;
3977  tp->period = 0xffff;
3978  if (!driver_setup.disconnection)
3979  np->target[i].usrflag = UF_NODISC;
3980  }
3981 
3982  /*
3983  ** Announce all that stuff to user.
3984  */
3985 
3986  printk(KERN_INFO "%s: ID %d, Fast-%d%s%s\n", ncr_name(np),
3987  np->myaddr,
3988  np->minsync < 12 ? 40 : (np->minsync < 25 ? 20 : 10),
3989  (np->rv_scntl0 & 0xa) ? ", Parity Checking" : ", NO Parity",
3990  (np->rv_stest2 & 0x20) ? ", Differential" : "");
3991 
3992  if (bootverbose > 1) {
3993  printk (KERN_INFO "%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
3994  "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
3995  ncr_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
3996  np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
3997 
3998  printk (KERN_INFO "%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
3999  "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
4000  ncr_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
4001  np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
4002  }
4003 
4004  if (bootverbose && np->paddr2)
4005  printk (KERN_INFO "%s: on-chip RAM at 0x%lx\n",
4006  ncr_name(np), np->paddr2);
4007 }
4008 
4009 /*==========================================================
4010 **
4011 **
4012 ** Done SCSI commands list management.
4013 **
4014 ** We donnot enter the scsi_done() callback immediately
4015 ** after a command has been seen as completed but we
4016 ** insert it into a list which is flushed outside any kind
4017 ** of driver critical section.
4018 ** This allows to do minimal stuff under interrupt and
4019 ** inside critical sections and to also avoid locking up
4020 ** on recursive calls to driver entry points under SMP.
4021 ** In fact, the only kernel point which is entered by the
4022 ** driver with a driver lock set is kmalloc(GFP_ATOMIC)
4023 ** that shall not reenter the driver under any circumstances,
4024 ** AFAIK.
4025 **
4026 **==========================================================
4027 */
4028 static inline void ncr_queue_done_cmd(struct ncb *np, struct scsi_cmnd *cmd)
4029 {
4030  unmap_scsi_data(np, cmd);
4031  cmd->host_scribble = (char *) np->done_list;
4032  np->done_list = cmd;
4033 }
4034 
4035 static inline void ncr_flush_done_cmds(struct scsi_cmnd *lcmd)
4036 {
4037  struct scsi_cmnd *cmd;
4038 
4039  while (lcmd) {
4040  cmd = lcmd;
4041  lcmd = (struct scsi_cmnd *) cmd->host_scribble;
4042  cmd->scsi_done(cmd);
4043  }
4044 }
4045 
4046 /*==========================================================
4047 **
4048 **
4049 ** Prepare the next negotiation message if needed.
4050 **
4051 ** Fill in the part of message buffer that contains the
4052 ** negotiation and the nego_status field of the CCB.
4053 ** Returns the size of the message in bytes.
4054 **
4055 **
4056 **==========================================================
4057 */
4058 
4059 
4060 static int ncr_prepare_nego(struct ncb *np, struct ccb *cp, u_char *msgptr)
4061 {
4062  struct tcb *tp = &np->target[cp->target];
4063  int msglen = 0;
4064  int nego = 0;
4065  struct scsi_target *starget = tp->starget;
4066 
4067  /* negotiate wide transfers ? */
4068  if (!tp->widedone) {
4069  if (spi_support_wide(starget)) {
4070  nego = NS_WIDE;
4071  } else
4072  tp->widedone=1;
4073  }
4074 
4075  /* negotiate synchronous transfers? */
4076  if (!nego && !tp->period) {
4077  if (spi_support_sync(starget)) {
4078  nego = NS_SYNC;
4079  } else {
4080  tp->period =0xffff;
4081  dev_info(&starget->dev, "target did not report SYNC.\n");
4082  }
4083  }
4084 
4085  switch (nego) {
4086  case NS_SYNC:
4087  msglen += spi_populate_sync_msg(msgptr + msglen,
4088  tp->maxoffs ? tp->minsync : 0, tp->maxoffs);
4089  break;
4090  case NS_WIDE:
4091  msglen += spi_populate_width_msg(msgptr + msglen, tp->usrwide);
4092  break;
4093  }
4094 
4095  cp->nego_status = nego;
4096 
4097  if (nego) {
4098  tp->nego_cp = cp;
4099  if (DEBUG_FLAGS & DEBUG_NEGO) {
4100  ncr_print_msg(cp, nego == NS_WIDE ?
4101  "wide msgout":"sync_msgout", msgptr);
4102  }
4103  }
4104 
4105  return msglen;
4106 }
4107 
4108 
4109 
4110 /*==========================================================
4111 **
4112 **
4113 ** Start execution of a SCSI command.
4114 ** This is called from the generic SCSI driver.
4115 **
4116 **
4117 **==========================================================
4118 */
4119 static int ncr_queue_command (struct ncb *np, struct scsi_cmnd *cmd)
4120 {
4121  struct scsi_device *sdev = cmd->device;
4122  struct tcb *tp = &np->target[sdev->id];
4123  struct lcb *lp = tp->lp[sdev->lun];
4124  struct ccb *cp;
4125 
4126  int segments;
4127  u_char idmsg, *msgptr;
4128  u32 msglen;
4129  int direction;
4130  u32 lastp, goalp;
4131 
4132  /*---------------------------------------------
4133  **
4134  ** Some shortcuts ...
4135  **
4136  **---------------------------------------------
4137  */
4138  if ((sdev->id == np->myaddr ) ||
4139  (sdev->id >= MAX_TARGET) ||
4140  (sdev->lun >= MAX_LUN )) {
4141  return(DID_BAD_TARGET);
4142  }
4143 
4144  /*---------------------------------------------
4145  **
4146  ** Complete the 1st TEST UNIT READY command
4147  ** with error condition if the device is
4148  ** flagged NOSCAN, in order to speed up
4149  ** the boot.
4150  **
4151  **---------------------------------------------
4152  */
4153  if ((cmd->cmnd[0] == 0 || cmd->cmnd[0] == 0x12) &&
4154  (tp->usrflag & UF_NOSCAN)) {
4155  tp->usrflag &= ~UF_NOSCAN;
4156  return DID_BAD_TARGET;
4157  }
4158 
4159  if (DEBUG_FLAGS & DEBUG_TINY) {
4160  PRINT_ADDR(cmd, "CMD=%x ", cmd->cmnd[0]);
4161  }
4162 
4163  /*---------------------------------------------------
4164  **
4165  ** Assign a ccb / bind cmd.
4166  ** If resetting, shorten settle_time if necessary
4167  ** in order to avoid spurious timeouts.
4168  ** If resetting or no free ccb,
4169  ** insert cmd into the waiting list.
4170  **
4171  **----------------------------------------------------
4172  */
4173  if (np->settle_time && cmd->request->timeout >= HZ) {
4174  u_long tlimit = jiffies + cmd->request->timeout - HZ;
4175  if (time_after(np->settle_time, tlimit))
4176  np->settle_time = tlimit;
4177  }
4178 
4179  if (np->settle_time || !(cp=ncr_get_ccb (np, cmd))) {
4180  insert_into_waiting_list(np, cmd);
4181  return(DID_OK);
4182  }
4183  cp->cmd = cmd;
4184 
4185  /*----------------------------------------------------
4186  **
4187  ** Build the identify / tag / sdtr message
4188  **
4189  **----------------------------------------------------
4190  */
4191 
4192  idmsg = IDENTIFY(0, sdev->lun);
4193 
4194  if (cp ->tag != NO_TAG ||
4195  (cp != np->ccb && np->disc && !(tp->usrflag & UF_NODISC)))
4196  idmsg |= 0x40;
4197 
4198  msgptr = cp->scsi_smsg;
4199  msglen = 0;
4200  msgptr[msglen++] = idmsg;
4201 
4202  if (cp->tag != NO_TAG) {
4203  char order = np->order;
4204 
4205  /*
4206  ** Force ordered tag if necessary to avoid timeouts
4207  ** and to preserve interactivity.
4208  */
4209  if (lp && time_after(jiffies, lp->tags_stime)) {
4210  if (lp->tags_smap) {
4211  order = ORDERED_QUEUE_TAG;
4212  if ((DEBUG_FLAGS & DEBUG_TAGS)||bootverbose>2){
4213  PRINT_ADDR(cmd,
4214  "ordered tag forced.\n");
4215  }
4216  }
4217  lp->tags_stime = jiffies + 3*HZ;
4218  lp->tags_smap = lp->tags_umap;
4219  }
4220 
4221  if (order == 0) {
4222  /*
4223  ** Ordered write ops, unordered read ops.
4224  */
4225  switch (cmd->cmnd[0]) {
4226  case 0x08: /* READ_SMALL (6) */
4227  case 0x28: /* READ_BIG (10) */
4228  case 0xa8: /* READ_HUGE (12) */
4229  order = SIMPLE_QUEUE_TAG;
4230  break;
4231  default:
4232  order = ORDERED_QUEUE_TAG;
4233  }
4234  }
4235  msgptr[msglen++] = order;
4236  /*
4237  ** Actual tags are numbered 1,3,5,..2*MAXTAGS+1,
4238  ** since we may have to deal with devices that have
4239  ** problems with #TAG 0 or too great #TAG numbers.
4240  */
4241  msgptr[msglen++] = (cp->tag << 1) + 1;
4242  }
4243 
4244  /*----------------------------------------------------
4245  **
4246  ** Build the data descriptors
4247  **
4248  **----------------------------------------------------
4249  */
4250 
4251  direction = cmd->sc_data_direction;
4252  if (direction != DMA_NONE) {
4253  segments = ncr_scatter(np, cp, cp->cmd);
4254  if (segments < 0) {
4255  ncr_free_ccb(np, cp);
4256  return(DID_ERROR);
4257  }
4258  }
4259  else {
4260  cp->data_len = 0;
4261  segments = 0;
4262  }
4263 
4264  /*---------------------------------------------------
4265  **
4266  ** negotiation required?
4267  **
4268  ** (nego_status is filled by ncr_prepare_nego())
4269  **
4270  **---------------------------------------------------
4271  */
4272 
4273  cp->nego_status = 0;
4274 
4275  if ((!tp->widedone || !tp->period) && !tp->nego_cp && lp) {
4276  msglen += ncr_prepare_nego (np, cp, msgptr + msglen);
4277  }
4278 
4279  /*----------------------------------------------------
4280  **
4281  ** Determine xfer direction.
4282  **
4283  **----------------------------------------------------
4284  */
4285  if (!cp->data_len)
4286  direction = DMA_NONE;
4287 
4288  /*
4289  ** If data direction is BIDIRECTIONAL, speculate FROM_DEVICE
4290  ** but prepare alternate pointers for TO_DEVICE in case
4291  ** of our speculation will be just wrong.
4292  ** SCRIPTS will swap values if needed.
4293  */
4294  switch(direction) {
4295  case DMA_BIDIRECTIONAL:
4296  case DMA_TO_DEVICE:
4297  goalp = NCB_SCRIPT_PHYS (np, data_out2) + 8;
4298  if (segments <= MAX_SCATTERL)
4299  lastp = goalp - 8 - (segments * 16);
4300  else {
4301  lastp = NCB_SCRIPTH_PHYS (np, hdata_out2);
4302  lastp -= (segments - MAX_SCATTERL) * 16;
4303  }
4304  if (direction != DMA_BIDIRECTIONAL)
4305  break;
4306  cp->phys.header.wgoalp = cpu_to_scr(goalp);
4307  cp->phys.header.wlastp = cpu_to_scr(lastp);
4308  /* fall through */
4309  case DMA_FROM_DEVICE:
4310  goalp = NCB_SCRIPT_PHYS (np, data_in2) + 8;
4311  if (segments <= MAX_SCATTERL)
4312  lastp = goalp - 8 - (segments * 16);
4313  else {
4314  lastp = NCB_SCRIPTH_PHYS (np, hdata_in2);
4315  lastp -= (segments - MAX_SCATTERL) * 16;
4316  }
4317  break;
4318  default:
4319  case DMA_NONE:
4320  lastp = goalp = NCB_SCRIPT_PHYS (np, no_data);
4321  break;
4322  }
4323 
4324  /*
4325  ** Set all pointers values needed by SCRIPTS.
4326  ** If direction is unknown, start at data_io.
4327  */
4328  cp->phys.header.lastp = cpu_to_scr(lastp);
4329  cp->phys.header.goalp = cpu_to_scr(goalp);
4330 
4331  if (direction == DMA_BIDIRECTIONAL)
4332  cp->phys.header.savep =
4333  cpu_to_scr(NCB_SCRIPTH_PHYS (np, data_io));
4334  else
4335  cp->phys.header.savep= cpu_to_scr(lastp);
4336 
4337  /*
4338  ** Save the initial data pointer in order to be able
4339  ** to redo the command.
4340  */
4341  cp->startp = cp->phys.header.savep;
4342 
4343  /*----------------------------------------------------
4344  **
4345  ** fill in ccb
4346  **
4347  **----------------------------------------------------
4348  **
4349  **
4350  ** physical -> virtual backlink
4351  ** Generic SCSI command
4352  */
4353 
4354  /*
4355  ** Startqueue
4356  */
4357  cp->start.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, select));
4358  cp->restart.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_dsa));
4359  /*
4360  ** select
4361  */
4362  cp->phys.select.sel_id = sdev_id(sdev);
4363  cp->phys.select.sel_scntl3 = tp->wval;
4364  cp->phys.select.sel_sxfer = tp->sval;
4365  /*
4366  ** message
4367  */
4368  cp->phys.smsg.addr = cpu_to_scr(CCB_PHYS (cp, scsi_smsg));
4369  cp->phys.smsg.size = cpu_to_scr(msglen);
4370 
4371  /*
4372  ** command
4373  */
4374  memcpy(cp->cdb_buf, cmd->cmnd, min_t(int, cmd->cmd_len, sizeof(cp->cdb_buf)));
4375  cp->phys.cmd.addr = cpu_to_scr(CCB_PHYS (cp, cdb_buf[0]));
4376  cp->phys.cmd.size = cpu_to_scr(cmd->cmd_len);
4377 
4378  /*
4379  ** status
4380  */
4381  cp->actualquirks = 0;
4382  cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
4383  cp->scsi_status = S_ILLEGAL;
4384  cp->parity_status = 0;
4385 
4386  cp->xerr_status = XE_OK;
4387 #if 0
4388  cp->sync_status = tp->sval;
4389  cp->wide_status = tp->wval;
4390 #endif
4391 
4392  /*----------------------------------------------------
4393  **
4394  ** Critical region: start this job.
4395  **
4396  **----------------------------------------------------
4397  */
4398 
4399  /* activate this job. */
4400  cp->magic = CCB_MAGIC;
4401 
4402  /*
4403  ** insert next CCBs into start queue.
4404  ** 2 max at a time is enough to flush the CCB wait queue.
4405  */
4406  cp->auto_sense = 0;
4407  if (lp)
4408  ncr_start_next_ccb(np, lp, 2);
4409  else
4410  ncr_put_start_queue(np, cp);
4411 
4412  /* Command is successfully queued. */
4413 
4414  return DID_OK;
4415 }
4416 
4417 
4418 /*==========================================================
4419 **
4420 **
4421 ** Insert a CCB into the start queue and wake up the
4422 ** SCRIPTS processor.
4423 **
4424 **
4425 **==========================================================
4426 */
4427 
4428 static void ncr_start_next_ccb(struct ncb *np, struct lcb *lp, int maxn)
4429 {
4430  struct list_head *qp;
4431  struct ccb *cp;
4432 
4433  if (lp->held_ccb)
4434  return;
4435 
4436  while (maxn-- && lp->queuedccbs < lp->queuedepth) {
4437  qp = ncr_list_pop(&lp->wait_ccbq);
4438  if (!qp)
4439  break;
4440  ++lp->queuedccbs;
4441  cp = list_entry(qp, struct ccb, link_ccbq);
4442  list_add_tail(qp, &lp->busy_ccbq);
4443  lp->jump_ccb[cp->tag == NO_TAG ? 0 : cp->tag] =
4444  cpu_to_scr(CCB_PHYS (cp, restart));
4445  ncr_put_start_queue(np, cp);
4446  }
4447 }
4448 
4449 static void ncr_put_start_queue(struct ncb *np, struct ccb *cp)
4450 {
4451  u16 qidx;
4452 
4453  /*
4454  ** insert into start queue.
4455  */
4456  if (!np->squeueput) np->squeueput = 1;
4457  qidx = np->squeueput + 2;
4458  if (qidx >= MAX_START + MAX_START) qidx = 1;
4459 
4460  np->scripth->tryloop [qidx] = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle));
4461  MEMORY_BARRIER();
4462  np->scripth->tryloop [np->squeueput] = cpu_to_scr(CCB_PHYS (cp, start));
4463 
4464  np->squeueput = qidx;
4465  ++np->queuedccbs;
4466  cp->queued = 1;
4467 
4468  if (DEBUG_FLAGS & DEBUG_QUEUE)
4469  printk ("%s: queuepos=%d.\n", ncr_name (np), np->squeueput);
4470 
4471  /*
4472  ** Script processor may be waiting for reselect.
4473  ** Wake it up.
4474  */
4475  MEMORY_BARRIER();
4476  OUTB (nc_istat, SIGP);
4477 }
4478 
4479 
4480 static int ncr_reset_scsi_bus(struct ncb *np, int enab_int, int settle_delay)
4481 {
4482  u32 term;
4483  int retv = 0;
4484 
4485  np->settle_time = jiffies + settle_delay * HZ;
4486 
4487  if (bootverbose > 1)
4488  printk("%s: resetting, "
4489  "command processing suspended for %d seconds\n",
4490  ncr_name(np), settle_delay);
4491 
4492  ncr_chip_reset(np, 100);
4493  udelay(2000); /* The 895 needs time for the bus mode to settle */
4494  if (enab_int)
4495  OUTW (nc_sien, RST);
4496  /*
4497  ** Enable Tolerant, reset IRQD if present and
4498  ** properly set IRQ mode, prior to resetting the bus.
4499  */
4500  OUTB (nc_stest3, TE);
4501  OUTB (nc_scntl1, CRST);
4502  udelay(200);
4503 
4504  if (!driver_setup.bus_check)
4505  goto out;
4506  /*
4507  ** Check for no terminators or SCSI bus shorts to ground.
4508  ** Read SCSI data bus, data parity bits and control signals.
4509  ** We are expecting RESET to be TRUE and other signals to be
4510  ** FALSE.
4511  */
4512 
4513  term = INB(nc_sstat0);
4514  term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */
4515  term |= ((INB(nc_sstat2) & 0x01) << 26) | /* sdp1 */
4516  ((INW(nc_sbdl) & 0xff) << 9) | /* d7-0 */
4517  ((INW(nc_sbdl) & 0xff00) << 10) | /* d15-8 */
4518  INB(nc_sbcl); /* req ack bsy sel atn msg cd io */
4519 
4520  if (!(np->features & FE_WIDE))
4521  term &= 0x3ffff;
4522 
4523  if (term != (2<<7)) {
4524  printk("%s: suspicious SCSI data while resetting the BUS.\n",
4525  ncr_name(np));
4526  printk("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
4527  "0x%lx, expecting 0x%lx\n",
4528  ncr_name(np),
4529  (np->features & FE_WIDE) ? "dp1,d15-8," : "",
4530  (u_long)term, (u_long)(2<<7));
4531  if (driver_setup.bus_check == 1)
4532  retv = 1;
4533  }
4534 out:
4535  OUTB (nc_scntl1, 0);
4536  return retv;
4537 }
4538 
4539 /*
4540  * Start reset process.
4541  * If reset in progress do nothing.
4542  * The interrupt handler will reinitialize the chip.
4543  * The timeout handler will wait for settle_time before
4544  * clearing it and so resuming command processing.
4545  */
4546 static void ncr_start_reset(struct ncb *np)
4547 {
4548  if (!np->settle_time) {
4549  ncr_reset_scsi_bus(np, 1, driver_setup.settle_delay);
4550  }
4551 }
4552 
4553 /*==========================================================
4554 **
4555 **
4556 ** Reset the SCSI BUS.
4557 ** This is called from the generic SCSI driver.
4558 **
4559 **
4560 **==========================================================
4561 */
4562 static int ncr_reset_bus (struct ncb *np, struct scsi_cmnd *cmd, int sync_reset)
4563 {
4564 /* struct scsi_device *device = cmd->device; */
4565  struct ccb *cp;
4566  int found;
4567 
4568 /*
4569  * Return immediately if reset is in progress.
4570  */
4571  if (np->settle_time) {
4572  return FAILED;
4573  }
4574 /*
4575  * Start the reset process.
4576  * The script processor is then assumed to be stopped.
4577  * Commands will now be queued in the waiting list until a settle
4578  * delay of 2 seconds will be completed.
4579  */
4580  ncr_start_reset(np);
4581 /*
4582  * First, look in the wakeup list
4583  */
4584  for (found=0, cp=np->ccb; cp; cp=cp->link_ccb) {
4585  /*
4586  ** look for the ccb of this command.
4587  */
4588  if (cp->host_status == HS_IDLE) continue;
4589  if (cp->cmd == cmd) {
4590  found = 1;
4591  break;
4592  }
4593  }
4594 /*
4595  * Then, look in the waiting list
4596  */
4597  if (!found && retrieve_from_waiting_list(0, np, cmd))
4598  found = 1;
4599 /*
4600  * Wake-up all awaiting commands with DID_RESET.
4601  */
4602  reset_waiting_list(np);
4603 /*
4604  * Wake-up all pending commands with HS_RESET -> DID_RESET.
4605  */
4606  ncr_wakeup(np, HS_RESET);
4607 /*
4608  * If the involved command was not in a driver queue, and the
4609  * scsi driver told us reset is synchronous, and the command is not
4610  * currently in the waiting list, complete it with DID_RESET status,
4611  * in order to keep it alive.
4612  */
4613  if (!found && sync_reset && !retrieve_from_waiting_list(0, np, cmd)) {
4614  cmd->result = ScsiResult(DID_RESET, 0);
4615  ncr_queue_done_cmd(np, cmd);
4616  }
4617 
4618  return SUCCESS;
4619 }
4620 
4621 #if 0 /* unused and broken.. */
4622 /*==========================================================
4623 **
4624 **
4625 ** Abort an SCSI command.
4626 ** This is called from the generic SCSI driver.
4627 **
4628 **
4629 **==========================================================
4630 */
4631 static int ncr_abort_command (struct ncb *np, struct scsi_cmnd *cmd)
4632 {
4633 /* struct scsi_device *device = cmd->device; */
4634  struct ccb *cp;
4635  int found;
4636  int retv;
4637 
4638 /*
4639  * First, look for the scsi command in the waiting list
4640  */
4641  if (remove_from_waiting_list(np, cmd)) {
4642  cmd->result = ScsiResult(DID_ABORT, 0);
4643  ncr_queue_done_cmd(np, cmd);
4644  return SCSI_ABORT_SUCCESS;
4645  }
4646 
4647 /*
4648  * Then, look in the wakeup list
4649  */
4650  for (found=0, cp=np->ccb; cp; cp=cp->link_ccb) {
4651  /*
4652  ** look for the ccb of this command.
4653  */
4654  if (cp->host_status == HS_IDLE) continue;
4655  if (cp->cmd == cmd) {
4656  found = 1;
4657  break;
4658  }
4659  }
4660 
4661  if (!found) {
4662  return SCSI_ABORT_NOT_RUNNING;
4663  }
4664 
4665  if (np->settle_time) {
4666  return SCSI_ABORT_SNOOZE;
4667  }
4668 
4669  /*
4670  ** If the CCB is active, patch schedule jumps for the
4671  ** script to abort the command.
4672  */
4673 
4674  switch(cp->host_status) {
4675  case HS_BUSY:
4676  case HS_NEGOTIATE:
4677  printk ("%s: abort ccb=%p (cancel)\n", ncr_name (np), cp);
4678  cp->start.schedule.l_paddr =
4680  retv = SCSI_ABORT_PENDING;
4681  break;
4682  case HS_DISCONNECT:
4683  cp->restart.schedule.l_paddr =
4685  retv = SCSI_ABORT_PENDING;
4686  break;
4687  default:
4688  retv = SCSI_ABORT_NOT_RUNNING;
4689  break;
4690 
4691  }
4692 
4693  /*
4694  ** If there are no requests, the script
4695  ** processor will sleep on SEL_WAIT_RESEL.
4696  ** Let's wake it up, since it may have to work.
4697  */
4698  OUTB (nc_istat, SIGP);
4699 
4700  return retv;
4701 }
4702 #endif
4703 
4704 static void ncr_detach(struct ncb *np)
4705 {
4706  struct ccb *cp;
4707  struct tcb *tp;
4708  struct lcb *lp;
4709  int target, lun;
4710  int i;
4711  char inst_name[16];
4712 
4713  /* Local copy so we don't access np after freeing it! */
4714  strlcpy(inst_name, ncr_name(np), sizeof(inst_name));
4715 
4716  printk("%s: releasing host resources\n", ncr_name(np));
4717 
4718 /*
4719 ** Stop the ncr_timeout process
4720 ** Set release_stage to 1 and wait that ncr_timeout() set it to 2.
4721 */
4722 
4723 #ifdef DEBUG_NCR53C8XX
4724  printk("%s: stopping the timer\n", ncr_name(np));
4725 #endif
4726  np->release_stage = 1;
4727  for (i = 50 ; i && np->release_stage != 2 ; i--)
4728  mdelay(100);
4729  if (np->release_stage != 2)
4730  printk("%s: the timer seems to be already stopped\n", ncr_name(np));
4731  else np->release_stage = 2;
4732 
4733 /*
4734 ** Disable chip interrupts
4735 */
4736 
4737 #ifdef DEBUG_NCR53C8XX
4738  printk("%s: disabling chip interrupts\n", ncr_name(np));
4739 #endif
4740  OUTW (nc_sien , 0);
4741  OUTB (nc_dien , 0);
4742 
4743  /*
4744  ** Reset NCR chip
4745  ** Restore bios setting for automatic clock detection.
4746  */
4747 
4748  printk("%s: resetting chip\n", ncr_name(np));
4749  ncr_chip_reset(np, 100);
4750 
4751  OUTB(nc_dmode, np->sv_dmode);
4752  OUTB(nc_dcntl, np->sv_dcntl);
4753  OUTB(nc_ctest0, np->sv_ctest0);
4754  OUTB(nc_ctest3, np->sv_ctest3);
4755  OUTB(nc_ctest4, np->sv_ctest4);
4756  OUTB(nc_ctest5, np->sv_ctest5);
4757  OUTB(nc_gpcntl, np->sv_gpcntl);
4758  OUTB(nc_stest2, np->sv_stest2);
4759 
4760  ncr_selectclock(np, np->sv_scntl3);
4761 
4762  /*
4763  ** Free allocated ccb(s)
4764  */
4765 
4766  while ((cp=np->ccb->link_ccb) != NULL) {
4767  np->ccb->link_ccb = cp->link_ccb;
4768  if (cp->host_status) {
4769  printk("%s: shall free an active ccb (host_status=%d)\n",
4770  ncr_name(np), cp->host_status);
4771  }
4772 #ifdef DEBUG_NCR53C8XX
4773  printk("%s: freeing ccb (%lx)\n", ncr_name(np), (u_long) cp);
4774 #endif
4775  m_free_dma(cp, sizeof(*cp), "CCB");
4776  }
4777 
4778  /* Free allocated tp(s) */
4779 
4780  for (target = 0; target < MAX_TARGET ; target++) {
4781  tp=&np->target[target];
4782  for (lun = 0 ; lun < MAX_LUN ; lun++) {
4783  lp = tp->lp[lun];
4784  if (lp) {
4785 #ifdef DEBUG_NCR53C8XX
4786  printk("%s: freeing lp (%lx)\n", ncr_name(np), (u_long) lp);
4787 #endif
4788  if (lp->jump_ccb != &lp->jump_ccb_0)
4789  m_free_dma(lp->jump_ccb,256,"JUMP_CCB");
4790  m_free_dma(lp, sizeof(*lp), "LCB");
4791  }
4792  }
4793  }
4794 
4795  if (np->scripth0)
4796  m_free_dma(np->scripth0, sizeof(struct scripth), "SCRIPTH");
4797  if (np->script0)
4798  m_free_dma(np->script0, sizeof(struct script), "SCRIPT");
4799  if (np->ccb)
4800  m_free_dma(np->ccb, sizeof(struct ccb), "CCB");
4801  m_free_dma(np, sizeof(struct ncb), "NCB");
4802 
4803  printk("%s: host resources successfully released\n", inst_name);
4804 }
4805 
4806 /*==========================================================
4807 **
4808 **
4809 ** Complete execution of a SCSI command.
4810 ** Signal completion to the generic SCSI driver.
4811 **
4812 **
4813 **==========================================================
4814 */
4815 
4816 void ncr_complete (struct ncb *np, struct ccb *cp)
4817 {
4818  struct scsi_cmnd *cmd;
4819  struct tcb *tp;
4820  struct lcb *lp;
4821 
4822  /*
4823  ** Sanity check
4824  */
4825 
4826  if (!cp || cp->magic != CCB_MAGIC || !cp->cmd)
4827  return;
4828 
4829  /*
4830  ** Print minimal debug information.
4831  */
4832 
4833  if (DEBUG_FLAGS & DEBUG_TINY)
4834  printk ("CCB=%lx STAT=%x/%x\n", (unsigned long)cp,
4835  cp->host_status,cp->scsi_status);
4836 
4837  /*
4838  ** Get command, target and lun pointers.
4839  */
4840 
4841  cmd = cp->cmd;
4842  cp->cmd = NULL;
4843  tp = &np->target[cmd->device->id];
4844  lp = tp->lp[cmd->device->lun];
4845 
4846  /*
4847  ** We donnot queue more than 1 ccb per target
4848  ** with negotiation at any time. If this ccb was
4849  ** used for negotiation, clear this info in the tcb.
4850  */
4851 
4852  if (cp == tp->nego_cp)
4853  tp->nego_cp = NULL;
4854 
4855  /*
4856  ** If auto-sense performed, change scsi status.
4857  */
4858  if (cp->auto_sense) {
4859  cp->scsi_status = cp->auto_sense;
4860  }
4861 
4862  /*
4863  ** If we were recovering from queue full or performing
4864  ** auto-sense, requeue skipped CCBs to the wait queue.
4865  */
4866 
4867  if (lp && lp->held_ccb) {
4868  if (cp == lp->held_ccb) {
4869  list_splice_init(&lp->skip_ccbq, &lp->wait_ccbq);
4870  lp->held_ccb = NULL;
4871  }
4872  }
4873 
4874  /*
4875  ** Check for parity errors.
4876  */
4877 
4878  if (cp->parity_status > 1) {
4879  PRINT_ADDR(cmd, "%d parity error(s).\n",cp->parity_status);
4880  }
4881 
4882  /*
4883  ** Check for extended errors.
4884  */
4885 
4886  if (cp->xerr_status != XE_OK) {
4887  switch (cp->xerr_status) {
4888  case XE_EXTRA_DATA:
4889  PRINT_ADDR(cmd, "extraneous data discarded.\n");
4890  break;
4891  case XE_BAD_PHASE:
4892  PRINT_ADDR(cmd, "invalid scsi phase (4/5).\n");
4893  break;
4894  default:
4895  PRINT_ADDR(cmd, "extended error %d.\n",
4896  cp->xerr_status);
4897  break;
4898  }
4899  if (cp->host_status==HS_COMPLETE)
4900  cp->host_status = HS_FAIL;
4901  }
4902 
4903  /*
4904  ** Print out any error for debugging purpose.
4905  */
4906  if (DEBUG_FLAGS & (DEBUG_RESULT|DEBUG_TINY)) {
4907  if (cp->host_status!=HS_COMPLETE || cp->scsi_status!=S_GOOD) {
4908  PRINT_ADDR(cmd, "ERROR: cmd=%x host_status=%x "
4909  "scsi_status=%x\n", cmd->cmnd[0],
4910  cp->host_status, cp->scsi_status);
4911  }
4912  }
4913 
4914  /*
4915  ** Check the status.
4916  */
4917  if ( (cp->host_status == HS_COMPLETE)
4918  && (cp->scsi_status == S_GOOD ||
4919  cp->scsi_status == S_COND_MET)) {
4920  /*
4921  * All went well (GOOD status).
4922  * CONDITION MET status is returned on
4923  * `Pre-Fetch' or `Search data' success.
4924  */
4925  cmd->result = ScsiResult(DID_OK, cp->scsi_status);
4926 
4927  /*
4928  ** @RESID@
4929  ** Could dig out the correct value for resid,
4930  ** but it would be quite complicated.
4931  */
4932  /* if (cp->phys.header.lastp != cp->phys.header.goalp) */
4933 
4934  /*
4935  ** Allocate the lcb if not yet.
4936  */
4937  if (!lp)
4938  ncr_alloc_lcb (np, cmd->device->id, cmd->device->lun);
4939 
4940  tp->bytes += cp->data_len;
4941  tp->transfers ++;
4942 
4943  /*
4944  ** If tags was reduced due to queue full,
4945  ** increase tags if 1000 good status received.
4946  */
4947  if (lp && lp->usetags && lp->numtags < lp->maxtags) {
4948  ++lp->num_good;
4949  if (lp->num_good >= 1000) {
4950  lp->num_good = 0;
4951  ++lp->numtags;
4952  ncr_setup_tags (np, cmd->device);
4953  }
4954  }
4955  } else if ((cp->host_status == HS_COMPLETE)
4956  && (cp->scsi_status == S_CHECK_COND)) {
4957  /*
4958  ** Check condition code
4959  */
4961 
4962  /*
4963  ** Copy back sense data to caller's buffer.
4964  */
4965  memcpy(cmd->sense_buffer, cp->sense_buf,
4966  min_t(size_t, SCSI_SENSE_BUFFERSIZE,
4967  sizeof(cp->sense_buf)));
4968 
4969  if (DEBUG_FLAGS & (DEBUG_RESULT|DEBUG_TINY)) {
4970  u_char *p = cmd->sense_buffer;
4971  int i;
4972  PRINT_ADDR(cmd, "sense data:");
4973  for (i=0; i<14; i++) printk (" %x", *p++);
4974  printk (".\n");
4975  }
4976  } else if ((cp->host_status == HS_COMPLETE)
4977  && (cp->scsi_status == S_CONFLICT)) {
4978  /*
4979  ** Reservation Conflict condition code
4980  */
4982 
4983  } else if ((cp->host_status == HS_COMPLETE)
4984  && (cp->scsi_status == S_BUSY ||
4985  cp->scsi_status == S_QUEUE_FULL)) {
4986 
4987  /*
4988  ** Target is busy.
4989  */
4990  cmd->result = ScsiResult(DID_OK, cp->scsi_status);
4991 
4992  } else if ((cp->host_status == HS_SEL_TIMEOUT)
4993  || (cp->host_status == HS_TIMEOUT)) {
4994 
4995  /*
4996  ** No response
4997  */
4998  cmd->result = ScsiResult(DID_TIME_OUT, cp->scsi_status);
4999 
5000  } else if (cp->host_status == HS_RESET) {
5001 
5002  /*
5003  ** SCSI bus reset
5004  */
5005  cmd->result = ScsiResult(DID_RESET, cp->scsi_status);
5006 
5007  } else if (cp->host_status == HS_ABORTED) {
5008 
5009  /*
5010  ** Transfer aborted
5011  */
5012  cmd->result = ScsiResult(DID_ABORT, cp->scsi_status);
5013 
5014  } else {
5015 
5016  /*
5017  ** Other protocol messes
5018  */
5019  PRINT_ADDR(cmd, "COMMAND FAILED (%x %x) @%p.\n",
5020  cp->host_status, cp->scsi_status, cp);
5021 
5022  cmd->result = ScsiResult(DID_ERROR, cp->scsi_status);
5023  }
5024 
5025  /*
5026  ** trace output
5027  */
5028 
5029  if (tp->usrflag & UF_TRACE) {
5030  u_char * p;
5031  int i;
5032  PRINT_ADDR(cmd, " CMD:");
5033  p = (u_char*) &cmd->cmnd[0];
5034  for (i=0; i<cmd->cmd_len; i++) printk (" %x", *p++);
5035 
5036  if (cp->host_status==HS_COMPLETE) {
5037  switch (cp->scsi_status) {
5038  case S_GOOD:
5039  printk (" GOOD");
5040  break;
5041  case S_CHECK_COND:
5042  printk (" SENSE:");
5043  p = (u_char*) &cmd->sense_buffer;
5044  for (i=0; i<14; i++)
5045  printk (" %x", *p++);
5046  break;
5047  default:
5048  printk (" STAT: %x\n", cp->scsi_status);
5049  break;
5050  }
5051  } else printk (" HOSTERROR: %x", cp->host_status);
5052  printk ("\n");
5053  }
5054 
5055  /*
5056  ** Free this ccb
5057  */
5058  ncr_free_ccb (np, cp);
5059 
5060  /*
5061  ** requeue awaiting scsi commands for this lun.
5062  */
5063  if (lp && lp->queuedccbs < lp->queuedepth &&
5064  !list_empty(&lp->wait_ccbq))
5065  ncr_start_next_ccb(np, lp, 2);
5066 
5067  /*
5068  ** requeue awaiting scsi commands for this controller.
5069  */
5070  if (np->waiting_list)
5072 
5073  /*
5074  ** signal completion to generic driver.
5075  */
5076  ncr_queue_done_cmd(np, cmd);
5077 }
5078 
5079 /*==========================================================
5080 **
5081 **
5082 ** Signal all (or one) control block done.
5083 **
5084 **
5085 **==========================================================
5086 */
5087 
5088 /*
5089 ** This CCB has been skipped by the NCR.
5090 ** Queue it in the corresponding unit queue.
5091 */
5092 static void ncr_ccb_skipped(struct ncb *np, struct ccb *cp)
5093 {
5094  struct tcb *tp = &np->target[cp->target];
5095  struct lcb *lp = tp->lp[cp->lun];
5096 
5097  if (lp && cp != np->ccb) {
5098  cp->host_status &= ~HS_SKIPMASK;
5099  cp->start.schedule.l_paddr =
5101  list_move_tail(&cp->link_ccbq, &lp->skip_ccbq);
5102  if (cp->queued) {
5103  --lp->queuedccbs;
5104  }
5105  }
5106  if (cp->queued) {
5107  --np->queuedccbs;
5108  cp->queued = 0;
5109  }
5110 }
5111 
5112 /*
5113 ** The NCR has completed CCBs.
5114 ** Look at the DONE QUEUE if enabled, otherwise scan all CCBs
5115 */
5116 void ncr_wakeup_done (struct ncb *np)
5117 {
5118  struct ccb *cp;
5119 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
5120  int i, j;
5121 
5122  i = np->ccb_done_ic;
5123  while (1) {
5124  j = i+1;
5125  if (j >= MAX_DONE)
5126  j = 0;
5127 
5128  cp = np->ccb_done[j];
5129  if (!CCB_DONE_VALID(cp))
5130  break;
5131 
5132  np->ccb_done[j] = (struct ccb *)CCB_DONE_EMPTY;
5133  np->scripth->done_queue[5*j + 4] =
5134  cpu_to_scr(NCB_SCRIPT_PHYS (np, done_plug));
5135  MEMORY_BARRIER();
5136  np->scripth->done_queue[5*i + 4] =
5137  cpu_to_scr(NCB_SCRIPT_PHYS (np, done_end));
5138 
5139  if (cp->host_status & HS_DONEMASK)
5140  ncr_complete (np, cp);
5141  else if (cp->host_status & HS_SKIPMASK)
5142  ncr_ccb_skipped (np, cp);
5143 
5144  i = j;
5145  }
5146  np->ccb_done_ic = i;
5147 #else
5148  cp = np->ccb;
5149  while (cp) {
5150  if (cp->host_status & HS_DONEMASK)
5151  ncr_complete (np, cp);
5152  else if (cp->host_status & HS_SKIPMASK)
5153  ncr_ccb_skipped (np, cp);
5154  cp = cp->link_ccb;
5155  }
5156 #endif
5157 }
5158 
5159 /*
5160 ** Complete all active CCBs.
5161 */
5162 void ncr_wakeup (struct ncb *np, u_long code)
5163 {
5164  struct ccb *cp = np->ccb;
5165 
5166  while (cp) {
5167  if (cp->host_status != HS_IDLE) {
5168  cp->host_status = code;
5169  ncr_complete (np, cp);
5170  }
5171  cp = cp->link_ccb;
5172  }
5173 }
5174 
5175 /*
5176 ** Reset ncr chip.
5177 */
5178 
5179 /* Some initialisation must be done immediately following reset, for 53c720,
5180  * at least. EA (dcntl bit 5) isn't set here as it is set once only in
5181  * the _detect function.
5182  */
5183 static void ncr_chip_reset(struct ncb *np, int delay)
5184 {
5185  OUTB (nc_istat, SRST);
5186  udelay(delay);
5187  OUTB (nc_istat, 0 );
5188 
5189  if (np->features & FE_EHP)
5190  OUTB (nc_ctest0, EHP);
5191  if (np->features & FE_MUX)
5192  OUTB (nc_ctest4, MUX);
5193 }
5194 
5195 
5196 /*==========================================================
5197 **
5198 **
5199 ** Start NCR chip.
5200 **
5201 **
5202 **==========================================================
5203 */
5204 
5205 void ncr_init (struct ncb *np, int reset, char * msg, u_long code)
5206 {
5207  int i;
5208 
5209  /*
5210  ** Reset chip if asked, otherwise just clear fifos.
5211  */
5212 
5213  if (reset) {
5214  OUTB (nc_istat, SRST);
5215  udelay(100);
5216  }
5217  else {
5218  OUTB (nc_stest3, TE|CSF);
5219  OUTONB (nc_ctest3, CLF);
5220  }
5221 
5222  /*
5223  ** Message.
5224  */
5225 
5226  if (msg) printk (KERN_INFO "%s: restart (%s).\n", ncr_name (np), msg);
5227 
5228  /*
5229  ** Clear Start Queue
5230  */
5231  np->queuedepth = MAX_START - 1; /* 1 entry needed as end marker */
5232  for (i = 1; i < MAX_START + MAX_START; i += 2)
5233  np->scripth0->tryloop[i] =
5235 
5236  /*
5237  ** Start at first entry.
5238  */
5239  np->squeueput = 0;
5240  np->script0->startpos[0] = cpu_to_scr(NCB_SCRIPTH_PHYS (np, tryloop));
5241 
5242 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
5243  /*
5244  ** Clear Done Queue
5245  */
5246  for (i = 0; i < MAX_DONE; i++) {
5247  np->ccb_done[i] = (struct ccb *)CCB_DONE_EMPTY;
5248  np->scripth0->done_queue[5*i + 4] =
5249  cpu_to_scr(NCB_SCRIPT_PHYS (np, done_end));
5250  }
5251 #endif
5252 
5253  /*
5254  ** Start at first entry.
5255  */
5256  np->script0->done_pos[0] = cpu_to_scr(NCB_SCRIPTH_PHYS (np,done_queue));
5257  np->ccb_done_ic = MAX_DONE-1;
5258  np->scripth0->done_queue[5*(MAX_DONE-1) + 4] =
5259  cpu_to_scr(NCB_SCRIPT_PHYS (np, done_plug));
5260 
5261  /*
5262  ** Wakeup all pending jobs.
5263  */
5264  ncr_wakeup (np, code);
5265 
5266  /*
5267  ** Init chip.
5268  */
5269 
5270  /*
5271  ** Remove reset; big delay because the 895 needs time for the
5272  ** bus mode to settle
5273  */
5274  ncr_chip_reset(np, 2000);
5275 
5276  OUTB (nc_scntl0, np->rv_scntl0 | 0xc0);
5277  /* full arb., ena parity, par->ATN */
5278  OUTB (nc_scntl1, 0x00); /* odd parity, and remove CRST!! */
5279 
5280  ncr_selectclock(np, np->rv_scntl3); /* Select SCSI clock */
5281 
5282  OUTB (nc_scid , RRE|np->myaddr); /* Adapter SCSI address */
5283  OUTW (nc_respid, 1ul<<np->myaddr); /* Id to respond to */
5284  OUTB (nc_istat , SIGP ); /* Signal Process */
5285  OUTB (nc_dmode , np->rv_dmode); /* Burst length, dma mode */
5286  OUTB (nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */
5287 
5288  OUTB (nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */
5289  OUTB (nc_ctest0, np->rv_ctest0); /* 720: CDIS and EHP */
5290  OUTB (nc_ctest3, np->rv_ctest3); /* Write and invalidate */
5291  OUTB (nc_ctest4, np->rv_ctest4); /* Master parity checking */
5292 
5293  OUTB (nc_stest2, EXT|np->rv_stest2); /* Extended Sreq/Sack filtering */
5294  OUTB (nc_stest3, TE); /* TolerANT enable */
5295  OUTB (nc_stime0, 0x0c ); /* HTH disabled STO 0.25 sec */
5296 
5297  /*
5298  ** Disable disconnects.
5299  */
5300 
5301  np->disc = 0;
5302 
5303  /*
5304  ** Enable GPIO0 pin for writing if LED support.
5305  */
5306 
5307  if (np->features & FE_LED0) {
5308  OUTOFFB (nc_gpcntl, 0x01);
5309  }
5310 
5311  /*
5312  ** enable ints
5313  */
5314 
5315  OUTW (nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
5316  OUTB (nc_dien , MDPE|BF|ABRT|SSI|SIR|IID);
5317 
5318  /*
5319  ** Fill in target structure.
5320  ** Reinitialize usrsync.
5321  ** Reinitialize usrwide.
5322  ** Prepare sync negotiation according to actual SCSI bus mode.
5323  */
5324 
5325  for (i=0;i<MAX_TARGET;i++) {
5326  struct tcb *tp = &np->target[i];
5327 
5328  tp->sval = 0;
5329  tp->wval = np->rv_scntl3;
5330 
5331  if (tp->usrsync != 255) {
5332  if (tp->usrsync <= np->maxsync) {
5333  if (tp->usrsync < np->minsync) {
5334  tp->usrsync = np->minsync;
5335  }
5336  }
5337  else
5338  tp->usrsync = 255;
5339  }
5340 
5341  if (tp->usrwide > np->maxwide)
5342  tp->usrwide = np->maxwide;
5343 
5344  }
5345 
5346  /*
5347  ** Start script processor.
5348  */
5349  if (np->paddr2) {
5350  if (bootverbose)
5351  printk ("%s: Downloading SCSI SCRIPTS.\n",
5352  ncr_name(np));
5353  OUTL (nc_scratcha, vtobus(np->script0));
5354  OUTL_DSP (NCB_SCRIPTH_PHYS (np, start_ram));
5355  }
5356  else
5357  OUTL_DSP (NCB_SCRIPT_PHYS (np, start));
5358 }
5359 
5360 /*==========================================================
5361 **
5362 ** Prepare the negotiation values for wide and
5363 ** synchronous transfers.
5364 **
5365 **==========================================================
5366 */
5367 
5368 static void ncr_negotiate (struct ncb* np, struct tcb* tp)
5369 {
5370  /*
5371  ** minsync unit is 4ns !
5372  */
5373 
5374  u_long minsync = tp->usrsync;
5375 
5376  /*
5377  ** SCSI bus mode limit
5378  */
5379 
5380  if (np->scsi_mode && np->scsi_mode == SMODE_SE) {
5381  if (minsync < 12) minsync = 12;
5382  }
5383 
5384  /*
5385  ** our limit ..
5386  */
5387 
5388  if (minsync < np->minsync)
5389  minsync = np->minsync;
5390 
5391  /*
5392  ** divider limit
5393  */
5394 
5395  if (minsync > np->maxsync)
5396  minsync = 255;
5397 
5398  if (tp->maxoffs > np->maxoffs)
5399  tp->maxoffs = np->maxoffs;
5400 
5401  tp->minsync = minsync;
5402  tp->maxoffs = (minsync<255 ? tp->maxoffs : 0);
5403 
5404  /*
5405  ** period=0: has to negotiate sync transfer
5406  */
5407 
5408  tp->period=0;
5409 
5410  /*
5411  ** widedone=0: has to negotiate wide transfer
5412  */
5413  tp->widedone=0;
5414 }
5415 
5416 /*==========================================================
5417 **
5418 ** Get clock factor and sync divisor for a given
5419 ** synchronous factor period.
5420 ** Returns the clock factor (in sxfer) and scntl3
5421 ** synchronous divisor field.
5422 **
5423 **==========================================================
5424 */
5425 
5426 static void ncr_getsync(struct ncb *np, u_char sfac, u_char *fakp, u_char *scntl3p)
5427 {
5428  u_long clk = np->clock_khz; /* SCSI clock frequency in kHz */
5429  int div = np->clock_divn; /* Number of divisors supported */
5430  u_long fak; /* Sync factor in sxfer */
5431  u_long per; /* Period in tenths of ns */
5432  u_long kpc; /* (per * clk) */
5433 
5434  /*
5435  ** Compute the synchronous period in tenths of nano-seconds
5436  */
5437  if (sfac <= 10) per = 250;
5438  else if (sfac == 11) per = 303;
5439  else if (sfac == 12) per = 500;
5440  else per = 40 * sfac;
5441 
5442  /*
5443  ** Look for the greatest clock divisor that allows an
5444  ** input speed faster than the period.
5445  */
5446  kpc = per * clk;
5447  while (--div > 0)
5448  if (kpc >= (div_10M[div] << 2)) break;
5449 
5450  /*
5451  ** Calculate the lowest clock factor that allows an output
5452  ** speed not faster than the period.
5453  */
5454  fak = (kpc - 1) / div_10M[div] + 1;
5455 
5456 #if 0 /* This optimization does not seem very useful */
5457 
5458  per = (fak * div_10M[div]) / clk;
5459 
5460  /*
5461  ** Why not to try the immediate lower divisor and to choose
5462  ** the one that allows the fastest output speed ?
5463  ** We don't want input speed too much greater than output speed.
5464  */
5465  if (div >= 1 && fak < 8) {
5466  u_long fak2, per2;
5467  fak2 = (kpc - 1) / div_10M[div-1] + 1;
5468  per2 = (fak2 * div_10M[div-1]) / clk;
5469  if (per2 < per && fak2 <= 8) {
5470  fak = fak2;
5471  per = per2;
5472  --div;
5473  }
5474  }
5475 #endif
5476 
5477  if (fak < 4) fak = 4; /* Should never happen, too bad ... */
5478 
5479  /*
5480  ** Compute and return sync parameters for the ncr
5481  */
5482  *fakp = fak - 4;
5483  *scntl3p = ((div+1) << 4) + (sfac < 25 ? 0x80 : 0);
5484 }
5485 
5486 
5487 /*==========================================================
5488 **
5489 ** Set actual values, sync status and patch all ccbs of
5490 ** a target according to new sync/wide agreement.
5491 **
5492 **==========================================================
5493 */
5494 
5495 static void ncr_set_sync_wide_status (struct ncb *np, u_char target)
5496 {
5497  struct ccb *cp;
5498  struct tcb *tp = &np->target[target];
5499 
5500  /*
5501  ** set actual value and sync_status
5502  */
5503  OUTB (nc_sxfer, tp->sval);
5504  np->sync_st = tp->sval;
5505  OUTB (nc_scntl3, tp->wval);
5506  np->wide_st = tp->wval;
5507 
5508  /*
5509  ** patch ALL ccbs of this target.
5510  */
5511  for (cp = np->ccb; cp; cp = cp->link_ccb) {
5512  if (!cp->cmd) continue;
5513  if (scmd_id(cp->cmd) != target) continue;
5514 #if 0
5515  cp->sync_status = tp->sval;
5516  cp->wide_status = tp->wval;
5517 #endif
5518  cp->phys.select.sel_scntl3 = tp->wval;
5519  cp->phys.select.sel_sxfer = tp->sval;
5520  }
5521 }
5522 
5523 /*==========================================================
5524 **
5525 ** Switch sync mode for current job and it's target
5526 **
5527 **==========================================================
5528 */
5529 
5530 static void ncr_setsync (struct ncb *np, struct ccb *cp, u_char scntl3, u_char sxfer)
5531 {
5532  struct scsi_cmnd *cmd = cp->cmd;
5533  struct tcb *tp;
5534  u_char target = INB (nc_sdid) & 0x0f;
5535  u_char idiv;
5536 
5537  BUG_ON(target != (scmd_id(cmd) & 0xf));
5538 
5539  tp = &np->target[target];
5540 
5541  if (!scntl3 || !(sxfer & 0x1f))
5542  scntl3 = np->rv_scntl3;
5543  scntl3 = (scntl3 & 0xf0) | (tp->wval & EWS) | (np->rv_scntl3 & 0x07);
5544 
5545  /*
5546  ** Deduce the value of controller sync period from scntl3.
5547  ** period is in tenths of nano-seconds.
5548  */
5549 
5550  idiv = ((scntl3 >> 4) & 0x7);
5551  if ((sxfer & 0x1f) && idiv)
5552  tp->period = (((sxfer>>5)+4)*div_10M[idiv-1])/np->clock_khz;
5553  else
5554  tp->period = 0xffff;
5555 
5556  /* Stop there if sync parameters are unchanged */
5557  if (tp->sval == sxfer && tp->wval == scntl3)
5558  return;
5559  tp->sval = sxfer;
5560  tp->wval = scntl3;
5561 
5562  if (sxfer & 0x01f) {
5563  /* Disable extended Sreq/Sack filtering */
5564  if (tp->period <= 2000)
5565  OUTOFFB(nc_stest2, EXT);
5566  }
5567 
5569 
5570  /*
5571  ** set actual value and sync_status
5572  ** patch ALL ccbs of this target.
5573  */
5574  ncr_set_sync_wide_status(np, target);
5575 }
5576 
5577 /*==========================================================
5578 **
5579 ** Switch wide mode for current job and it's target
5580 ** SCSI specs say: a SCSI device that accepts a WDTR
5581 ** message shall reset the synchronous agreement to
5582 ** asynchronous mode.
5583 **
5584 **==========================================================
5585 */
5586 
5587 static void ncr_setwide (struct ncb *np, struct ccb *cp, u_char wide, u_char ack)
5588 {
5589  struct scsi_cmnd *cmd = cp->cmd;
5590  u16 target = INB (nc_sdid) & 0x0f;
5591  struct tcb *tp;
5592  u_char scntl3;
5593  u_char sxfer;
5594 
5595  BUG_ON(target != (scmd_id(cmd) & 0xf));
5596 
5597  tp = &np->target[target];
5598  tp->widedone = wide+1;
5599  scntl3 = (tp->wval & (~EWS)) | (wide ? EWS : 0);
5600 
5601  sxfer = ack ? 0 : tp->sval;
5602 
5603  /*
5604  ** Stop there if sync/wide parameters are unchanged
5605  */
5606  if (tp->sval == sxfer && tp->wval == scntl3) return;
5607  tp->sval = sxfer;
5608  tp->wval = scntl3;
5609 
5610  /*
5611  ** Bells and whistles ;-)
5612  */
5613  if (bootverbose >= 2) {
5614  dev_info(&cmd->device->sdev_target->dev, "WIDE SCSI %sabled.\n",
5615  (scntl3 & EWS) ? "en" : "dis");
5616  }
5617 
5618  /*
5619  ** set actual value and sync_status
5620  ** patch ALL ccbs of this target.
5621  */
5622  ncr_set_sync_wide_status(np, target);
5623 }
5624 
5625 /*==========================================================
5626 **
5627 ** Switch tagged mode for a target.
5628 **
5629 **==========================================================
5630 */
5631 
5632 static void ncr_setup_tags (struct ncb *np, struct scsi_device *sdev)
5633 {
5634  unsigned char tn = sdev->id, ln = sdev->lun;
5635  struct tcb *tp = &np->target[tn];
5636  struct lcb *lp = tp->lp[ln];
5637  u_char reqtags, maxdepth;
5638 
5639  /*
5640  ** Just in case ...
5641  */
5642  if ((!tp) || (!lp) || !sdev)
5643  return;
5644 
5645  /*
5646  ** If SCSI device queue depth is not yet set, leave here.
5647  */
5648  if (!lp->scdev_depth)
5649  return;
5650 
5651  /*
5652  ** Donnot allow more tags than the SCSI driver can queue
5653  ** for this device.
5654  ** Donnot allow more tags than we can handle.
5655  */
5656  maxdepth = lp->scdev_depth;
5657  if (maxdepth > lp->maxnxs) maxdepth = lp->maxnxs;
5658  if (lp->maxtags > maxdepth) lp->maxtags = maxdepth;
5659  if (lp->numtags > maxdepth) lp->numtags = maxdepth;
5660 
5661  /*
5662  ** only devices conformant to ANSI Version >= 2
5663  ** only devices capable of tagged commands
5664  ** only if enabled by user ..
5665  */
5666  if (sdev->tagged_supported && lp->numtags > 1) {
5667  reqtags = lp->numtags;
5668  } else {
5669  reqtags = 1;
5670  }
5671 
5672  /*
5673  ** Update max number of tags
5674  */
5675  lp->numtags = reqtags;
5676  if (lp->numtags > lp->maxtags)
5677  lp->maxtags = lp->numtags;
5678 
5679  /*
5680  ** If we want to switch tag mode, we must wait
5681  ** for no CCB to be active.
5682  */
5683  if (reqtags > 1 && lp->usetags) { /* Stay in tagged mode */
5684  if (lp->queuedepth == reqtags) /* Already announced */
5685  return;
5686  lp->queuedepth = reqtags;
5687  }
5688  else if (reqtags <= 1 && !lp->usetags) { /* Stay in untagged mode */
5689  lp->queuedepth = reqtags;
5690  return;
5691  }
5692  else { /* Want to switch tag mode */
5693  if (lp->busyccbs) /* If not yet safe, return */
5694  return;
5695  lp->queuedepth = reqtags;
5696  lp->usetags = reqtags > 1 ? 1 : 0;
5697  }
5698 
5699  /*
5700  ** Patch the lun mini-script, according to tag mode.
5701  */
5702  lp->jump_tag.l_paddr = lp->usetags?
5703  cpu_to_scr(NCB_SCRIPT_PHYS(np, resel_tag)) :
5704  cpu_to_scr(NCB_SCRIPT_PHYS(np, resel_notag));
5705 
5706  /*
5707  ** Announce change to user.
5708  */
5709  if (bootverbose) {
5710  if (lp->usetags) {
5711  dev_info(&sdev->sdev_gendev,
5712  "tagged command queue depth set to %d\n",
5713  reqtags);
5714  } else {
5715  dev_info(&sdev->sdev_gendev,
5716  "tagged command queueing disabled\n");
5717  }
5718  }
5719 }
5720 
5721 /*==========================================================
5722 **
5723 **
5724 ** ncr timeout handler.
5725 **
5726 **
5727 **==========================================================
5728 **
5729 ** Misused to keep the driver running when
5730 ** interrupts are not configured correctly.
5731 **
5732 **----------------------------------------------------------
5733 */
5734 
5735 static void ncr_timeout (struct ncb *np)
5736 {
5737  u_long thistime = jiffies;
5738 
5739  /*
5740  ** If release process in progress, let's go
5741  ** Set the release stage from 1 to 2 to synchronize
5742  ** with the release process.
5743  */
5744 
5745  if (np->release_stage) {
5746  if (np->release_stage == 1) np->release_stage = 2;
5747  return;
5748  }
5749 
5750  np->timer.expires = jiffies + SCSI_NCR_TIMER_INTERVAL;
5751  add_timer(&np->timer);
5752 
5753  /*
5754  ** If we are resetting the ncr, wait for settle_time before
5755  ** clearing it. Then command processing will be resumed.
5756  */
5757  if (np->settle_time) {
5758  if (np->settle_time <= thistime) {
5759  if (bootverbose > 1)
5760  printk("%s: command processing resumed\n", ncr_name(np));
5761  np->settle_time = 0;
5762  np->disc = 1;
5764  }
5765  return;
5766  }
5767 
5768  /*
5769  ** Since the generic scsi driver only allows us 0.5 second
5770  ** to perform abort of a command, we must look at ccbs about
5771  ** every 0.25 second.
5772  */
5773  if (np->lasttime + 4*HZ < thistime) {
5774  /*
5775  ** block ncr interrupts
5776  */
5777  np->lasttime = thistime;
5778  }
5779 
5780 #ifdef SCSI_NCR_BROKEN_INTR
5781  if (INB(nc_istat) & (INTF|SIP|DIP)) {
5782 
5783  /*
5784  ** Process pending interrupts.
5785  */
5786  if (DEBUG_FLAGS & DEBUG_TINY) printk ("{");
5787  ncr_exception (np);
5788  if (DEBUG_FLAGS & DEBUG_TINY) printk ("}");
5789  }
5790 #endif /* SCSI_NCR_BROKEN_INTR */
5791 }
5792 
5793 /*==========================================================
5794 **
5795 ** log message for real hard errors
5796 **
5797 ** "ncr0 targ 0?: ERROR (ds:si) (so-si-sd) (sxfer/scntl3) @ name (dsp:dbc)."
5798 ** " reg: r0 r1 r2 r3 r4 r5 r6 ..... rf."
5799 **
5800 ** exception register:
5801 ** ds: dstat
5802 ** si: sist
5803 **
5804 ** SCSI bus lines:
5805 ** so: control lines as driver by NCR.
5806 ** si: control lines as seen by NCR.
5807 ** sd: scsi data lines as seen by NCR.
5808 **
5809 ** wide/fastmode:
5810 ** sxfer: (see the manual)
5811 ** scntl3: (see the manual)
5812 **
5813 ** current script command:
5814 ** dsp: script address (relative to start of script).
5815 ** dbc: first word of script command.
5816 **
5817 ** First 16 register of the chip:
5818 ** r0..rf
5819 **
5820 **==========================================================
5821 */
5822 
5823 static void ncr_log_hard_error(struct ncb *np, u16 sist, u_char dstat)
5824 {
5825  u32 dsp;
5826  int script_ofs;
5827  int script_size;
5828  char *script_name;
5829  u_char *script_base;
5830  int i;
5831 
5832  dsp = INL (nc_dsp);
5833 
5834  if (dsp > np->p_script && dsp <= np->p_script + sizeof(struct script)) {
5835  script_ofs = dsp - np->p_script;
5836  script_size = sizeof(struct script);
5837  script_base = (u_char *) np->script0;
5838  script_name = "script";
5839  }
5840  else if (np->p_scripth < dsp &&
5841  dsp <= np->p_scripth + sizeof(struct scripth)) {
5842  script_ofs = dsp - np->p_scripth;
5843  script_size = sizeof(struct scripth);
5844  script_base = (u_char *) np->scripth0;
5845  script_name = "scripth";
5846  } else {
5847  script_ofs = dsp;
5848  script_size = 0;
5849  script_base = NULL;
5850  script_name = "mem";
5851  }
5852 
5853  printk ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x) @ (%s %x:%08x).\n",
5854  ncr_name (np), (unsigned)INB (nc_sdid)&0x0f, dstat, sist,
5855  (unsigned)INB (nc_socl), (unsigned)INB (nc_sbcl), (unsigned)INB (nc_sbdl),
5856  (unsigned)INB (nc_sxfer),(unsigned)INB (nc_scntl3), script_name, script_ofs,
5857  (unsigned)INL (nc_dbc));
5858 
5859  if (((script_ofs & 3) == 0) &&
5860  (unsigned)script_ofs < script_size) {
5861  printk ("%s: script cmd = %08x\n", ncr_name(np),
5862  scr_to_cpu((int) *(ncrcmd *)(script_base + script_ofs)));
5863  }
5864 
5865  printk ("%s: regdump:", ncr_name(np));
5866  for (i=0; i<16;i++)
5867  printk (" %02x", (unsigned)INB_OFF(i));
5868  printk (".\n");
5869 }
5870 
5871 /*============================================================
5872 **
5873 ** ncr chip exception handler.
5874 **
5875 **============================================================
5876 **
5877 ** In normal cases, interrupt conditions occur one at a
5878 ** time. The ncr is able to stack in some extra registers
5879 ** other interrupts that will occur after the first one.
5880 ** But, several interrupts may occur at the same time.
5881 **
5882 ** We probably should only try to deal with the normal
5883 ** case, but it seems that multiple interrupts occur in
5884 ** some cases that are not abnormal at all.
5885 **
5886 ** The most frequent interrupt condition is Phase Mismatch.
5887 ** We should want to service this interrupt quickly.
5888 ** A SCSI parity error may be delivered at the same time.
5889 ** The SIR interrupt is not very frequent in this driver,
5890 ** since the INTFLY is likely used for command completion
5891 ** signaling.
5892 ** The Selection Timeout interrupt may be triggered with
5893 ** IID and/or UDC.
5894 ** The SBMC interrupt (SCSI Bus Mode Change) may probably
5895 ** occur at any time.
5896 **
5897 ** This handler try to deal as cleverly as possible with all
5898 ** the above.
5899 **
5900 **============================================================
5901 */
5902 
5903 void ncr_exception (struct ncb *np)
5904 {
5905  u_char istat, dstat;
5906  u16 sist;
5907  int i;
5908 
5909  /*
5910  ** interrupt on the fly ?
5911  ** Since the global header may be copied back to a CCB
5912  ** using a posted PCI memory write, the last operation on
5913  ** the istat register is a READ in order to flush posted
5914  ** PCI write commands.
5915  */
5916  istat = INB (nc_istat);
5917  if (istat & INTF) {
5918  OUTB (nc_istat, (istat & SIGP) | INTF);
5919  istat = INB (nc_istat);
5920  if (DEBUG_FLAGS & DEBUG_TINY) printk ("F ");
5921  ncr_wakeup_done (np);
5922  }
5923 
5924  if (!(istat & (SIP|DIP)))
5925  return;
5926 
5927  if (istat & CABRT)
5928  OUTB (nc_istat, CABRT);
5929 
5930  /*
5931  ** Steinbach's Guideline for Systems Programming:
5932  ** Never test for an error condition you don't know how to handle.
5933  */
5934 
5935  sist = (istat & SIP) ? INW (nc_sist) : 0;
5936  dstat = (istat & DIP) ? INB (nc_dstat) : 0;
5937 
5938  if (DEBUG_FLAGS & DEBUG_TINY)
5939  printk ("<%d|%x:%x|%x:%x>",
5940  (int)INB(nc_scr0),
5941  dstat,sist,
5942  (unsigned)INL(nc_dsp),
5943  (unsigned)INL(nc_dbc));
5944 
5945  /*========================================================
5946  ** First, interrupts we want to service cleanly.
5947  **
5948  ** Phase mismatch is the most frequent interrupt, and
5949  ** so we have to service it as quickly and as cleanly
5950  ** as possible.
5951  ** Programmed interrupts are rarely used in this driver,
5952  ** but we must handle them cleanly anyway.
5953  ** We try to deal with PAR and SBMC combined with
5954  ** some other interrupt(s).
5955  **=========================================================
5956  */
5957 
5958  if (!(sist & (STO|GEN|HTH|SGE|UDC|RST)) &&
5959  !(dstat & (MDPE|BF|ABRT|IID))) {
5960  if ((sist & SBMC) && ncr_int_sbmc (np))
5961  return;
5962  if ((sist & PAR) && ncr_int_par (np))
5963  return;
5964  if (sist & MA) {
5965  ncr_int_ma (np);
5966  return;
5967  }
5968  if (dstat & SIR) {
5969  ncr_int_sir (np);
5970  return;
5971  }
5972  /*
5973  ** DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 2.
5974  */
5975  if (!(sist & (SBMC|PAR)) && !(dstat & SSI)) {
5976  printk( "%s: unknown interrupt(s) ignored, "
5977  "ISTAT=%x DSTAT=%x SIST=%x\n",
5978  ncr_name(np), istat, dstat, sist);
5979  return;
5980  }
5981  OUTONB_STD ();
5982  return;
5983  }
5984 
5985  /*========================================================
5986  ** Now, interrupts that need some fixing up.
5987  ** Order and multiple interrupts is so less important.
5988  **
5989  ** If SRST has been asserted, we just reset the chip.
5990  **
5991  ** Selection is intirely handled by the chip. If the
5992  ** chip says STO, we trust it. Seems some other
5993  ** interrupts may occur at the same time (UDC, IID), so
5994  ** we ignore them. In any case we do enough fix-up
5995  ** in the service routine.
5996  ** We just exclude some fatal dma errors.
5997  **=========================================================
5998  */
5999 
6000  if (sist & RST) {
6001  ncr_init (np, 1, bootverbose ? "scsi reset" : NULL, HS_RESET);
6002  return;
6003  }
6004 
6005  if ((sist & STO) &&
6006  !(dstat & (MDPE|BF|ABRT))) {
6007  /*
6008  ** DEL 397 - 53C875 Rev 3 - Part Number 609-0392410 - ITEM 1.
6009  */
6010  OUTONB (nc_ctest3, CLF);
6011 
6012  ncr_int_sto (np);
6013  return;
6014  }
6015 
6016  /*=========================================================
6017  ** Now, interrupts we are not able to recover cleanly.
6018  ** (At least for the moment).
6019  **
6020  ** Do the register dump.
6021  ** Log message for real hard errors.
6022  ** Clear all fifos.
6023  ** For MDPE, BF, ABORT, IID, SGE and HTH we reset the
6024  ** BUS and the chip.
6025  ** We are more soft for UDC.
6026  **=========================================================
6027  */
6028 
6029  if (time_after(jiffies, np->regtime)) {
6030  np->regtime = jiffies + 10*HZ;
6031  for (i = 0; i<sizeof(np->regdump); i++)
6032  ((char*)&np->regdump)[i] = INB_OFF(i);
6033  np->regdump.nc_dstat = dstat;
6034  np->regdump.nc_sist = sist;
6035  }
6036 
6037  ncr_log_hard_error(np, sist, dstat);
6038 
6039  printk ("%s: have to clear fifos.\n", ncr_name (np));
6040  OUTB (nc_stest3, TE|CSF);
6041  OUTONB (nc_ctest3, CLF);
6042 
6043  if ((sist & (SGE)) ||
6044  (dstat & (MDPE|BF|ABRT|IID))) {
6045  ncr_start_reset(np);
6046  return;
6047  }
6048 
6049  if (sist & HTH) {
6050  printk ("%s: handshake timeout\n", ncr_name(np));
6051  ncr_start_reset(np);
6052  return;
6053  }
6054 
6055  if (sist & UDC) {
6056  printk ("%s: unexpected disconnect\n", ncr_name(np));
6058  OUTL_DSP (NCB_SCRIPT_PHYS (np, cleanup));
6059  return;
6060  }
6061 
6062  /*=========================================================
6063  ** We just miss the cause of the interrupt. :(
6064  ** Print a message. The timeout will do the real work.
6065  **=========================================================
6066  */
6067  printk ("%s: unknown interrupt\n", ncr_name(np));
6068 }
6069 
6070 /*==========================================================
6071 **
6072 ** ncr chip exception handler for selection timeout
6073 **
6074 **==========================================================
6075 **
6076 ** There seems to be a bug in the 53c810.
6077 ** Although a STO-Interrupt is pending,
6078 ** it continues executing script commands.
6079 ** But it will fail and interrupt (IID) on
6080 ** the next instruction where it's looking
6081 ** for a valid phase.
6082 **
6083 **----------------------------------------------------------
6084 */
6085 
6086 void ncr_int_sto (struct ncb *np)
6087 {
6088  u_long dsa;
6089  struct ccb *cp;
6090  if (DEBUG_FLAGS & DEBUG_TINY) printk ("T");
6091 
6092  /*
6093  ** look for ccb and set the status.
6094  */
6095 
6096  dsa = INL (nc_dsa);
6097  cp = np->ccb;
6098  while (cp && (CCB_PHYS (cp, phys) != dsa))
6099  cp = cp->link_ccb;
6100 
6101  if (cp) {
6102  cp-> host_status = HS_SEL_TIMEOUT;
6103  ncr_complete (np, cp);
6104  }
6105 
6106  /*
6107  ** repair start queue and jump to start point.
6108  */
6109 
6110  OUTL_DSP (NCB_SCRIPTH_PHYS (np, sto_restart));
6111  return;
6112 }
6113 
6114 /*==========================================================
6115 **
6116 ** ncr chip exception handler for SCSI bus mode change
6117 **
6118 **==========================================================
6119 **
6120 ** spi2-r12 11.2.3 says a transceiver mode change must
6121 ** generate a reset event and a device that detects a reset
6122 ** event shall initiate a hard reset. It says also that a
6123 ** device that detects a mode change shall set data transfer
6124 ** mode to eight bit asynchronous, etc...
6125 ** So, just resetting should be enough.
6126 **
6127 **
6128 **----------------------------------------------------------
6129 */
6130 
6131 static int ncr_int_sbmc (struct ncb *np)
6132 {
6133  u_char scsi_mode = INB (nc_stest4) & SMODE;
6134 
6135  if (scsi_mode != np->scsi_mode) {
6136  printk("%s: SCSI bus mode change from %x to %x.\n",
6137  ncr_name(np), np->scsi_mode, scsi_mode);
6138 
6139  np->scsi_mode = scsi_mode;
6140 
6141 
6142  /*
6143  ** Suspend command processing for 1 second and
6144  ** reinitialize all except the chip.
6145  */
6146  np->settle_time = jiffies + HZ;
6147  ncr_init (np, 0, bootverbose ? "scsi mode change" : NULL, HS_RESET);
6148  return 1;
6149  }
6150  return 0;
6151 }
6152 
6153 /*==========================================================
6154 **
6155 ** ncr chip exception handler for SCSI parity error.
6156 **
6157 **==========================================================
6158 **
6159 **
6160 **----------------------------------------------------------
6161 */
6162 
6163 static int ncr_int_par (struct ncb *np)
6164 {
6165  u_char hsts = INB (HS_PRT);
6166  u32 dbc = INL (nc_dbc);
6167  u_char sstat1 = INB (nc_sstat1);
6168  int phase = -1;
6169  int msg = -1;
6170  u32 jmp;
6171 
6172  printk("%s: SCSI parity error detected: SCR1=%d DBC=%x SSTAT1=%x\n",
6173  ncr_name(np), hsts, dbc, sstat1);
6174 
6175  /*
6176  * Ignore the interrupt if the NCR is not connected
6177  * to the SCSI bus, since the right work should have
6178  * been done on unexpected disconnection handling.
6179  */
6180  if (!(INB (nc_scntl1) & ISCON))
6181  return 0;
6182 
6183  /*
6184  * If the nexus is not clearly identified, reset the bus.
6185  * We will try to do better later.
6186  */
6187  if (hsts & HS_INVALMASK)
6188  goto reset_all;
6189 
6190  /*
6191  * If the SCSI parity error occurs in MSG IN phase, prepare a
6192  * MSG PARITY message. Otherwise, prepare a INITIATOR DETECTED
6193  * ERROR message and let the device decide to retry the command
6194  * or to terminate with check condition. If we were in MSG IN
6195  * phase waiting for the response of a negotiation, we will
6196  * get SIR_NEGO_FAILED at dispatch.
6197  */
6198  if (!(dbc & 0xc0000000))
6199  phase = (dbc >> 24) & 7;
6200  if (phase == 7)
6201  msg = MSG_PARITY_ERROR;
6202  else
6203  msg = INITIATOR_ERROR;
6204 
6205 
6206  /*
6207  * If the NCR stopped on a MOVE ^ DATA_IN, we jump to a
6208  * script that will ignore all data in bytes until phase
6209  * change, since we are not sure the chip will wait the phase
6210  * change prior to delivering the interrupt.
6211  */
6212  if (phase == 1)
6213  jmp = NCB_SCRIPTH_PHYS (np, par_err_data_in);
6214  else
6215  jmp = NCB_SCRIPTH_PHYS (np, par_err_other);
6216 
6217  OUTONB (nc_ctest3, CLF ); /* clear dma fifo */
6218  OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */
6219 
6220  np->msgout[0] = msg;
6221  OUTL_DSP (jmp);
6222  return 1;
6223 
6224 reset_all:
6225  ncr_start_reset(np);
6226  return 1;
6227 }
6228 
6229 /*==========================================================
6230 **
6231 **
6232 ** ncr chip exception handler for phase errors.
6233 **
6234 **
6235 **==========================================================
6236 **
6237 ** We have to construct a new transfer descriptor,
6238 ** to transfer the rest of the current block.
6239 **
6240 **----------------------------------------------------------
6241 */
6242 
6243 static void ncr_int_ma (struct ncb *np)
6244 {
6245  u32 dbc;
6246  u32 rest;
6247  u32 dsp;
6248  u32 dsa;
6249  u32 nxtdsp;
6250  u32 newtmp;
6251  u32 *vdsp;
6252  u32 oadr, olen;
6253  u32 *tblp;
6254  ncrcmd *newcmd;
6255  u_char cmd, sbcl;
6256  struct ccb *cp;
6257 
6258  dsp = INL (nc_dsp);
6259  dbc = INL (nc_dbc);
6260  sbcl = INB (nc_sbcl);
6261 
6262  cmd = dbc >> 24;
6263  rest = dbc & 0xffffff;
6264 
6265  /*
6266  ** Take into account dma fifo and various buffers and latches,
6267  ** only if the interrupted phase is an OUTPUT phase.
6268  */
6269 
6270  if ((cmd & 1) == 0) {
6271  u_char ctest5, ss0, ss2;
6272  u16 delta;
6273 
6274  ctest5 = (np->rv_ctest5 & DFS) ? INB (nc_ctest5) : 0;
6275  if (ctest5 & DFS)
6276  delta=(((ctest5 << 8) | (INB (nc_dfifo) & 0xff)) - rest) & 0x3ff;
6277  else
6278  delta=(INB (nc_dfifo) - rest) & 0x7f;
6279 
6280  /*
6281  ** The data in the dma fifo has not been transferred to
6282  ** the target -> add the amount to the rest
6283  ** and clear the data.
6284  ** Check the sstat2 register in case of wide transfer.
6285  */
6286 
6287  rest += delta;
6288  ss0 = INB (nc_sstat0);
6289  if (ss0 & OLF) rest++;
6290  if (ss0 & ORF) rest++;
6291  if (INB(nc_scntl3) & EWS) {
6292  ss2 = INB (nc_sstat2);
6293  if (ss2 & OLF1) rest++;
6294  if (ss2 & ORF1) rest++;
6295  }
6296 
6297  if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
6298  printk ("P%x%x RL=%d D=%d SS0=%x ", cmd&7, sbcl&7,
6299  (unsigned) rest, (unsigned) delta, ss0);
6300 
6301  } else {
6302  if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
6303  printk ("P%x%x RL=%d ", cmd&7, sbcl&7, rest);
6304  }
6305 
6306  /*
6307  ** Clear fifos.
6308  */
6309  OUTONB (nc_ctest3, CLF ); /* clear dma fifo */
6310  OUTB (nc_stest3, TE|CSF); /* clear scsi fifo */
6311 
6312  /*
6313  ** locate matching cp.
6314  ** if the interrupted phase is DATA IN or DATA OUT,
6315  ** trust the global header.
6316  */
6317  dsa = INL (nc_dsa);
6318  if (!(cmd & 6)) {
6319  cp = np->header.cp;
6320  if (CCB_PHYS(cp, phys) != dsa)
6321  cp = NULL;
6322  } else {
6323  cp = np->ccb;
6324  while (cp && (CCB_PHYS (cp, phys) != dsa))
6325  cp = cp->link_ccb;
6326  }
6327 
6328  /*
6329  ** try to find the interrupted script command,
6330  ** and the address at which to continue.
6331  */
6332  vdsp = NULL;
6333  nxtdsp = 0;
6334  if (dsp > np->p_script &&
6335  dsp <= np->p_script + sizeof(struct script)) {
6336  vdsp = (u32 *)((char*)np->script0 + (dsp-np->p_script-8));
6337  nxtdsp = dsp;
6338  }
6339  else if (dsp > np->p_scripth &&
6340  dsp <= np->p_scripth + sizeof(struct scripth)) {
6341  vdsp = (u32 *)((char*)np->scripth0 + (dsp-np->p_scripth-8));
6342  nxtdsp = dsp;
6343  }
6344  else if (cp) {
6345  if (dsp == CCB_PHYS (cp, patch[2])) {
6346  vdsp = &cp->patch[0];
6347  nxtdsp = scr_to_cpu(vdsp[3]);
6348  }
6349  else if (dsp == CCB_PHYS (cp, patch[6])) {
6350  vdsp = &cp->patch[4];
6351  nxtdsp = scr_to_cpu(vdsp[3]);
6352  }
6353  }
6354 
6355  /*
6356  ** log the information
6357  */
6358 
6359  if (DEBUG_FLAGS & DEBUG_PHASE) {
6360  printk ("\nCP=%p CP2=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
6361  cp, np->header.cp,
6362  (unsigned)dsp,
6363  (unsigned)nxtdsp, vdsp, cmd);
6364  }
6365 
6366  /*
6367  ** cp=0 means that the DSA does not point to a valid control
6368  ** block. This should not happen since we donnot use multi-byte
6369  ** move while we are being reselected ot after command complete.
6370  ** We are not able to recover from such a phase error.
6371  */
6372  if (!cp) {
6373  printk ("%s: SCSI phase error fixup: "
6374  "CCB already dequeued (0x%08lx)\n",
6375  ncr_name (np), (u_long) np->header.cp);
6376  goto reset_all;
6377  }
6378 
6379  /*
6380  ** get old startaddress and old length.
6381  */
6382 
6383  oadr = scr_to_cpu(vdsp[1]);
6384 
6385  if (cmd & 0x10) { /* Table indirect */
6386  tblp = (u32 *) ((char*) &cp->phys + oadr);
6387  olen = scr_to_cpu(tblp[0]);
6388  oadr = scr_to_cpu(tblp[1]);
6389  } else {
6390  tblp = (u32 *) 0;
6391  olen = scr_to_cpu(vdsp[0]) & 0xffffff;
6392  }
6393 
6394  if (DEBUG_FLAGS & DEBUG_PHASE) {
6395  printk ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
6396  (unsigned) (scr_to_cpu(vdsp[0]) >> 24),
6397  tblp,
6398  (unsigned) olen,
6399  (unsigned) oadr);
6400  }
6401 
6402  /*
6403  ** check cmd against assumed interrupted script command.
6404  */
6405 
6406  if (cmd != (scr_to_cpu(vdsp[0]) >> 24)) {
6407  PRINT_ADDR(cp->cmd, "internal error: cmd=%02x != %02x=(vdsp[0] "
6408  ">> 24)\n", cmd, scr_to_cpu(vdsp[0]) >> 24);
6409 
6410  goto reset_all;
6411  }
6412 
6413  /*
6414  ** cp != np->header.cp means that the header of the CCB
6415  ** currently being processed has not yet been copied to
6416  ** the global header area. That may happen if the device did
6417  ** not accept all our messages after having been selected.
6418  */
6419  if (cp != np->header.cp) {
6420  printk ("%s: SCSI phase error fixup: "
6421  "CCB address mismatch (0x%08lx != 0x%08lx)\n",
6422  ncr_name (np), (u_long) cp, (u_long) np->header.cp);
6423  }
6424 
6425  /*
6426  ** if old phase not dataphase, leave here.
6427  */
6428 
6429  if (cmd & 0x06) {
6430  PRINT_ADDR(cp->cmd, "phase change %x-%x %d@%08x resid=%d.\n",
6431  cmd&7, sbcl&7, (unsigned)olen,
6432  (unsigned)oadr, (unsigned)rest);
6433  goto unexpected_phase;
6434  }
6435 
6436  /*
6437  ** choose the correct patch area.
6438  ** if savep points to one, choose the other.
6439  */
6440 
6441  newcmd = cp->patch;
6442  newtmp = CCB_PHYS (cp, patch);
6443  if (newtmp == scr_to_cpu(cp->phys.header.savep)) {
6444  newcmd = &cp->patch[4];
6445  newtmp = CCB_PHYS (cp, patch[4]);
6446  }
6447 
6448  /*
6449  ** fillin the commands
6450  */
6451 
6452  newcmd[0] = cpu_to_scr(((cmd & 0x0f) << 24) | rest);
6453  newcmd[1] = cpu_to_scr(oadr + olen - rest);
6454  newcmd[2] = cpu_to_scr(SCR_JUMP);
6455  newcmd[3] = cpu_to_scr(nxtdsp);
6456 
6457  if (DEBUG_FLAGS & DEBUG_PHASE) {
6458  PRINT_ADDR(cp->cmd, "newcmd[%d] %x %x %x %x.\n",
6459  (int) (newcmd - cp->patch),
6460  (unsigned)scr_to_cpu(newcmd[0]),
6461  (unsigned)scr_to_cpu(newcmd[1]),
6462  (unsigned)scr_to_cpu(newcmd[2]),
6463  (unsigned)scr_to_cpu(newcmd[3]));
6464  }
6465  /*
6466  ** fake the return address (to the patch).
6467  ** and restart script processor at dispatcher.
6468  */
6469  OUTL (nc_temp, newtmp);
6470  OUTL_DSP (NCB_SCRIPT_PHYS (np, dispatch));
6471  return;
6472 
6473  /*
6474  ** Unexpected phase changes that occurs when the current phase
6475  ** is not a DATA IN or DATA OUT phase are due to error conditions.
6476  ** Such event may only happen when the SCRIPTS is using a
6477  ** multibyte SCSI MOVE.
6478  **
6479  ** Phase change Some possible cause
6480  **
6481  ** COMMAND --> MSG IN SCSI parity error detected by target.
6482  ** COMMAND --> STATUS Bad command or refused by target.
6483  ** MSG OUT --> MSG IN Message rejected by target.
6484  ** MSG OUT --> COMMAND Bogus target that discards extended
6485  ** negotiation messages.
6486  **
6487  ** The code below does not care of the new phase and so
6488  ** trusts the target. Why to annoy it ?
6489  ** If the interrupted phase is COMMAND phase, we restart at
6490  ** dispatcher.
6491  ** If a target does not get all the messages after selection,
6492  ** the code assumes blindly that the target discards extended
6493  ** messages and clears the negotiation status.
6494  ** If the target does not want all our response to negotiation,
6495  ** we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
6496  ** bloat for such a should_not_happen situation).
6497  ** In all other situation, we reset the BUS.
6498  ** Are these assumptions reasonable ? (Wait and see ...)
6499  */
6500 unexpected_phase:
6501  dsp -= 8;
6502  nxtdsp = 0;
6503 
6504  switch (cmd & 7) {
6505  case 2: /* COMMAND phase */
6506  nxtdsp = NCB_SCRIPT_PHYS (np, dispatch);
6507  break;
6508 #if 0
6509  case 3: /* STATUS phase */
6510  nxtdsp = NCB_SCRIPT_PHYS (np, dispatch);
6511  break;
6512 #endif
6513  case 6: /* MSG OUT phase */
6514  np->scripth->nxtdsp_go_on[0] = cpu_to_scr(dsp + 8);
6515  if (dsp == NCB_SCRIPT_PHYS (np, send_ident)) {
6516  cp->host_status = HS_BUSY;
6517  nxtdsp = NCB_SCRIPTH_PHYS (np, clratn_go_on);
6518  }
6519  else if (dsp == NCB_SCRIPTH_PHYS (np, send_wdtr) ||
6520  dsp == NCB_SCRIPTH_PHYS (np, send_sdtr)) {
6521  nxtdsp = NCB_SCRIPTH_PHYS (np, nego_bad_phase);
6522  }
6523  break;
6524 #if 0
6525  case 7: /* MSG IN phase */
6526  nxtdsp = NCB_SCRIPT_PHYS (np, clrack);
6527  break;
6528 #endif
6529  }
6530 
6531  if (nxtdsp) {
6532  OUTL_DSP (nxtdsp);
6533  return;
6534  }
6535 
6536 reset_all:
6537  ncr_start_reset(np);
6538 }
6539 
6540 
6541 static void ncr_sir_to_redo(struct ncb *np, int num, struct ccb *cp)
6542 {
6543  struct scsi_cmnd *cmd = cp->cmd;
6544  struct tcb *tp = &np->target[cmd->device->id];
6545  struct lcb *lp = tp->lp[cmd->device->lun];
6546  struct list_head *qp;
6547  struct ccb * cp2;
6548  int disc_cnt = 0;
6549  int busy_cnt = 0;
6550  u32 startp;
6551  u_char s_status = INB (SS_PRT);
6552 
6553  /*
6554  ** Let the SCRIPTS processor skip all not yet started CCBs,
6555  ** and count disconnected CCBs. Since the busy queue is in
6556  ** the same order as the chip start queue, disconnected CCBs
6557  ** are before cp and busy ones after.
6558  */
6559  if (lp) {
6560  qp = lp->busy_ccbq.prev;
6561  while (qp != &lp->busy_ccbq) {
6562  cp2 = list_entry(qp, struct ccb, link_ccbq);
6563  qp = qp->prev;
6564  ++busy_cnt;
6565  if (cp2 == cp)
6566  break;
6567  cp2->start.schedule.l_paddr =
6569  }
6570  lp->held_ccb = cp; /* Requeue when this one completes */
6571  disc_cnt = lp->queuedccbs - busy_cnt;
6572  }
6573 
6574  switch(s_status) {
6575  default: /* Just for safety, should never happen */
6576  case S_QUEUE_FULL:
6577  /*
6578  ** Decrease number of tags to the number of
6579  ** disconnected commands.
6580  */
6581  if (!lp)
6582  goto out;
6583  if (bootverbose >= 1) {
6584  PRINT_ADDR(cmd, "QUEUE FULL! %d busy, %d disconnected "
6585  "CCBs\n", busy_cnt, disc_cnt);
6586  }
6587  if (disc_cnt < lp->numtags) {
6588  lp->numtags = disc_cnt > 2 ? disc_cnt : 2;
6589  lp->num_good = 0;
6590  ncr_setup_tags (np, cmd->device);
6591  }
6592  /*
6593  ** Requeue the command to the start queue.
6594  ** If any disconnected commands,
6595  ** Clear SIGP.
6596  ** Jump to reselect.
6597  */
6598  cp->phys.header.savep = cp->startp;
6599  cp->host_status = HS_BUSY;
6600  cp->scsi_status = S_ILLEGAL;
6601 
6602  ncr_put_start_queue(np, cp);
6603  if (disc_cnt)
6604  INB (nc_ctest2); /* Clear SIGP */
6605  OUTL_DSP (NCB_SCRIPT_PHYS (np, reselect));
6606  return;
6607  case S_TERMINATED:
6608  case S_CHECK_COND:
6609  /*
6610  ** If we were requesting sense, give up.
6611  */
6612  if (cp->auto_sense)
6613  goto out;
6614 
6615  /*
6616  ** Device returned CHECK CONDITION status.
6617  ** Prepare all needed data strutures for getting
6618  ** sense data.
6619  **
6620  ** identify message
6621  */
6622  cp->scsi_smsg2[0] = IDENTIFY(0, cmd->device->lun);
6623  cp->phys.smsg.addr = cpu_to_scr(CCB_PHYS (cp, scsi_smsg2));
6624  cp->phys.smsg.size = cpu_to_scr(1);
6625 
6626  /*
6627  ** sense command
6628  */
6629  cp->phys.cmd.addr = cpu_to_scr(CCB_PHYS (cp, sensecmd));
6630  cp->phys.cmd.size = cpu_to_scr(6);
6631 
6632  /*
6633  ** patch requested size into sense command
6634  */
6635  cp->sensecmd[0] = 0x03;
6636  cp->sensecmd[1] = cmd->device->lun << 5;
6637  cp->sensecmd[4] = sizeof(cp->sense_buf);
6638 
6639  /*
6640  ** sense data
6641  */
6642  memset(cp->sense_buf, 0, sizeof(cp->sense_buf));
6643  cp->phys.sense.addr = cpu_to_scr(CCB_PHYS(cp,sense_buf[0]));
6644  cp->phys.sense.size = cpu_to_scr(sizeof(cp->sense_buf));
6645 
6646  /*
6647  ** requeue the command.
6648  */
6649  startp = cpu_to_scr(NCB_SCRIPTH_PHYS (np, sdata_in));
6650 
6651  cp->phys.header.savep = startp;
6652  cp->phys.header.goalp = startp + 24;
6653  cp->phys.header.lastp = startp;
6654  cp->phys.header.wgoalp = startp + 24;
6655  cp->phys.header.wlastp = startp;
6656 
6657  cp->host_status = HS_BUSY;
6658  cp->scsi_status = S_ILLEGAL;
6659  cp->auto_sense = s_status;
6660 
6661  cp->start.schedule.l_paddr =
6663 
6664  /*
6665  ** Select without ATN for quirky devices.
6666  */
6667  if (cmd->device->select_no_atn)
6668  cp->start.schedule.l_paddr =
6670 
6671  ncr_put_start_queue(np, cp);
6672 
6673  OUTL_DSP (NCB_SCRIPT_PHYS (np, start));
6674  return;
6675  }
6676 
6677 out:
6678  OUTONB_STD ();
6679  return;
6680 }
6681 
6682 
6683 /*==========================================================
6684 **
6685 **
6686 ** ncr chip exception handler for programmed interrupts.
6687 **
6688 **
6689 **==========================================================
6690 */
6691 
6692 void ncr_int_sir (struct ncb *np)
6693 {
6694  u_char scntl3;
6695  u_char chg, ofs, per, fak, wide;
6696  u_char num = INB (nc_dsps);
6697  struct ccb *cp=NULL;
6698  u_long dsa = INL (nc_dsa);
6699  u_char target = INB (nc_sdid) & 0x0f;
6700  struct tcb *tp = &np->target[target];
6701  struct scsi_target *starget = tp->starget;
6702 
6703  if (DEBUG_FLAGS & DEBUG_TINY) printk ("I#%d", num);
6704 
6705  switch (num) {
6706  case SIR_INTFLY:
6707  /*
6708  ** This is used for HP Zalon/53c720 where INTFLY
6709  ** operation is currently broken.
6710  */
6711  ncr_wakeup_done(np);
6712 #ifdef SCSI_NCR_CCB_DONE_SUPPORT
6713  OUTL(nc_dsp, NCB_SCRIPT_PHYS (np, done_end) + 8);
6714 #else
6715  OUTL(nc_dsp, NCB_SCRIPT_PHYS (np, start));
6716 #endif
6717  return;
6718  case SIR_RESEL_NO_MSG_IN:
6719  case SIR_RESEL_NO_IDENTIFY:
6720  /*
6721  ** If devices reselecting without sending an IDENTIFY
6722  ** message still exist, this should help.
6723  ** We just assume lun=0, 1 CCB, no tag.
6724  */
6725  if (tp->lp[0]) {
6726  OUTL_DSP (scr_to_cpu(tp->lp[0]->jump_ccb[0]));
6727  return;
6728  }
6729  case SIR_RESEL_BAD_TARGET: /* Will send a TARGET RESET message */
6730  case SIR_RESEL_BAD_LUN: /* Will send a TARGET RESET message */
6731  case SIR_RESEL_BAD_I_T_L_Q: /* Will send an ABORT TAG message */
6732  case SIR_RESEL_BAD_I_T_L: /* Will send an ABORT message */
6733  printk ("%s:%d: SIR %d, "
6734  "incorrect nexus identification on reselection\n",
6735  ncr_name (np), target, num);
6736  goto out;
6737  case SIR_DONE_OVERFLOW:
6738  printk ("%s:%d: SIR %d, "
6739  "CCB done queue overflow\n",
6740  ncr_name (np), target, num);
6741  goto out;
6742  case SIR_BAD_STATUS:
6743  cp = np->header.cp;
6744  if (!cp || CCB_PHYS (cp, phys) != dsa)
6745  goto out;
6746  ncr_sir_to_redo(np, num, cp);
6747  return;
6748  default:
6749  /*
6750  ** lookup the ccb
6751  */
6752  cp = np->ccb;
6753  while (cp && (CCB_PHYS (cp, phys) != dsa))
6754  cp = cp->link_ccb;
6755 
6756  BUG_ON(!cp);
6757  BUG_ON(cp != np->header.cp);
6758 
6759  if (!cp || cp != np->header.cp)
6760  goto out;
6761  }
6762 
6763  switch (num) {
6764 /*-----------------------------------------------------------------------------
6765 **
6766 ** Was Sie schon immer ueber transfermode negotiation wissen wollten ...
6767 ** ("Everything you've always wanted to know about transfer mode
6768 ** negotiation")
6769 **
6770 ** We try to negotiate sync and wide transfer only after
6771 ** a successful inquire command. We look at byte 7 of the
6772 ** inquire data to determine the capabilities of the target.
6773 **
6774 ** When we try to negotiate, we append the negotiation message
6775 ** to the identify and (maybe) simple tag message.
6776 ** The host status field is set to HS_NEGOTIATE to mark this
6777 ** situation.
6778 **
6779 ** If the target doesn't answer this message immediately
6780 ** (as required by the standard), the SIR_NEGO_FAIL interrupt
6781 ** will be raised eventually.
6782 ** The handler removes the HS_NEGOTIATE status, and sets the
6783 ** negotiated value to the default (async / nowide).
6784 **
6785 ** If we receive a matching answer immediately, we check it
6786 ** for validity, and set the values.
6787 **
6788 ** If we receive a Reject message immediately, we assume the
6789 ** negotiation has failed, and fall back to standard values.
6790 **
6791 ** If we receive a negotiation message while not in HS_NEGOTIATE
6792 ** state, it's a target initiated negotiation. We prepare a
6793 ** (hopefully) valid answer, set our parameters, and send back
6794 ** this answer to the target.
6795 **
6796 ** If the target doesn't fetch the answer (no message out phase),
6797 ** we assume the negotiation has failed, and fall back to default
6798 ** settings.
6799 **
6800 ** When we set the values, we adjust them in all ccbs belonging
6801 ** to this target, in the controller's register, and in the "phys"
6802 ** field of the controller's struct ncb.
6803 **
6804 ** Possible cases: hs sir msg_in value send goto
6805 ** We try to negotiate:
6806 ** -> target doesn't msgin NEG FAIL noop defa. - dispatch
6807 ** -> target rejected our msg NEG FAIL reject defa. - dispatch
6808 ** -> target answered (ok) NEG SYNC sdtr set - clrack
6809 ** -> target answered (!ok) NEG SYNC sdtr defa. REJ--->msg_bad
6810 ** -> target answered (ok) NEG WIDE wdtr set - clrack
6811 ** -> target answered (!ok) NEG WIDE wdtr defa. REJ--->msg_bad
6812 ** -> any other msgin NEG FAIL noop defa. - dispatch
6813 **
6814 ** Target tries to negotiate:
6815 ** -> incoming message --- SYNC sdtr set SDTR -
6816 ** -> incoming message --- WIDE wdtr set WDTR -
6817 ** We sent our answer:
6818 ** -> target doesn't msgout --- PROTO ? defa. - dispatch
6819 **
6820 **-----------------------------------------------------------------------------
6821 */
6822 
6823  case SIR_NEGO_FAILED:
6824  /*-------------------------------------------------------
6825  **
6826  ** Negotiation failed.
6827  ** Target doesn't send an answer message,
6828  ** or target rejected our message.
6829  **
6830  ** Remove negotiation request.
6831  **
6832  **-------------------------------------------------------
6833  */
6834  OUTB (HS_PRT, HS_BUSY);
6835 
6836  /* fall through */
6837 
6838  case SIR_NEGO_PROTO:
6839  /*-------------------------------------------------------
6840  **
6841  ** Negotiation failed.
6842  ** Target doesn't fetch the answer message.
6843  **
6844  **-------------------------------------------------------
6845  */
6846 
6847  if (DEBUG_FLAGS & DEBUG_NEGO) {
6848  PRINT_ADDR(cp->cmd, "negotiation failed sir=%x "
6849  "status=%x.\n", num, cp->nego_status);
6850  }
6851 
6852  /*
6853  ** any error in negotiation:
6854  ** fall back to default mode.
6855  */
6856  switch (cp->nego_status) {
6857 
6858  case NS_SYNC:
6859  spi_period(starget) = 0;
6860  spi_offset(starget) = 0;
6861  ncr_setsync (np, cp, 0, 0xe0);
6862  break;
6863 
6864  case NS_WIDE:
6865  spi_width(starget) = 0;
6866  ncr_setwide (np, cp, 0, 0);
6867  break;
6868 
6869  }
6870  np->msgin [0] = NOP;
6871  np->msgout[0] = NOP;
6872  cp->nego_status = 0;
6873  break;
6874 
6875  case SIR_NEGO_SYNC:
6876  if (DEBUG_FLAGS & DEBUG_NEGO) {
6877  ncr_print_msg(cp, "sync msgin", np->msgin);
6878  }
6879 
6880  chg = 0;
6881  per = np->msgin[3];
6882  ofs = np->msgin[4];
6883  if (ofs==0) per=255;
6884 
6885  /*
6886  ** if target sends SDTR message,
6887  ** it CAN transfer synch.
6888  */
6889 
6890  if (ofs && starget)
6891  spi_support_sync(starget) = 1;
6892 
6893  /*
6894  ** check values against driver limits.
6895  */
6896 
6897  if (per < np->minsync)
6898  {chg = 1; per = np->minsync;}
6899  if (per < tp->minsync)
6900  {chg = 1; per = tp->minsync;}
6901  if (ofs > tp->maxoffs)
6902  {chg = 1; ofs = tp->maxoffs;}
6903 
6904  /*
6905  ** Check against controller limits.
6906  */
6907  fak = 7;
6908  scntl3 = 0;
6909  if (ofs != 0) {
6910  ncr_getsync(np, per, &fak, &scntl3);
6911  if (fak > 7) {
6912  chg = 1;
6913  ofs = 0;
6914  }
6915  }
6916  if (ofs == 0) {
6917  fak = 7;
6918  per = 0;
6919  scntl3 = 0;
6920  tp->minsync = 0;
6921  }
6922 
6923  if (DEBUG_FLAGS & DEBUG_NEGO) {
6924  PRINT_ADDR(cp->cmd, "sync: per=%d scntl3=0x%x ofs=%d "
6925  "fak=%d chg=%d.\n", per, scntl3, ofs, fak, chg);
6926  }
6927 
6928  if (INB (HS_PRT) == HS_NEGOTIATE) {
6929  OUTB (HS_PRT, HS_BUSY);
6930  switch (cp->nego_status) {
6931 
6932  case NS_SYNC:
6933  /* This was an answer message */
6934  if (chg) {
6935  /* Answer wasn't acceptable. */
6936  spi_period(starget) = 0;
6937  spi_offset(starget) = 0;
6938  ncr_setsync(np, cp, 0, 0xe0);
6939  OUTL_DSP(NCB_SCRIPT_PHYS (np, msg_bad));
6940  } else {
6941  /* Answer is ok. */
6942  spi_period(starget) = per;
6943  spi_offset(starget) = ofs;
6944  ncr_setsync(np, cp, scntl3, (fak<<5)|ofs);
6945  OUTL_DSP(NCB_SCRIPT_PHYS (np, clrack));
6946  }
6947  return;
6948 
6949  case NS_WIDE:
6950  spi_width(starget) = 0;
6951  ncr_setwide(np, cp, 0, 0);
6952  break;
6953  }
6954  }
6955 
6956  /*
6957  ** It was a request. Set value and
6958  ** prepare an answer message
6959  */
6960 
6961  spi_period(starget) = per;
6962  spi_offset(starget) = ofs;
6963  ncr_setsync(np, cp, scntl3, (fak<<5)|ofs);
6964 
6965  spi_populate_sync_msg(np->msgout, per, ofs);
6966  cp->nego_status = NS_SYNC;
6967 
6968  if (DEBUG_FLAGS & DEBUG_NEGO) {
6969  ncr_print_msg(cp, "sync msgout", np->msgout);
6970  }
6971 
6972  if (!ofs) {
6973  OUTL_DSP (NCB_SCRIPT_PHYS (np, msg_bad));
6974  return;
6975  }
6976  np->msgin [0] = NOP;
6977 
6978  break;
6979 
6980  case SIR_NEGO_WIDE:
6981  /*
6982  ** Wide request message received.
6983  */
6984  if (DEBUG_FLAGS & DEBUG_NEGO) {
6985  ncr_print_msg(cp, "wide msgin", np->msgin);
6986  }
6987 
6988  /*
6989  ** get requested values.
6990  */
6991 
6992  chg = 0;
6993  wide = np->msgin[3];
6994 
6995  /*
6996  ** if target sends WDTR message,
6997  ** it CAN transfer wide.
6998  */
6999 
7000  if (wide && starget)
7001  spi_support_wide(starget) = 1;
7002 
7003  /*
7004  ** check values against driver limits.
7005  */
7006 
7007  if (wide > tp->usrwide)
7008  {chg = 1; wide = tp->usrwide;}
7009 
7010  if (DEBUG_FLAGS & DEBUG_NEGO) {
7011  PRINT_ADDR(cp->cmd, "wide: wide=%d chg=%d.\n", wide,
7012  chg);
7013  }
7014 
7015  if (INB (HS_PRT) == HS_NEGOTIATE) {
7016  OUTB (HS_PRT, HS_BUSY);
7017  switch (cp->nego_status) {
7018 
7019  case NS_WIDE:
7020  /*
7021  ** This was an answer message
7022  */
7023  if (chg) {
7024  /* Answer wasn't acceptable. */
7025  spi_width(starget) = 0;
7026  ncr_setwide(np, cp, 0, 1);
7027  OUTL_DSP (NCB_SCRIPT_PHYS (np, msg_bad));
7028  } else {
7029  /* Answer is ok. */
7030  spi_width(starget) = wide;
7031  ncr_setwide(np, cp, wide, 1);
7032  OUTL_DSP (NCB_SCRIPT_PHYS (np, clrack));
7033  }
7034  return;
7035 
7036  case NS_SYNC:
7037  spi_period(starget) = 0;
7038  spi_offset(starget) = 0;
7039  ncr_setsync(np, cp, 0, 0xe0);
7040  break;
7041  }
7042  }
7043 
7044  /*
7045  ** It was a request, set value and
7046  ** prepare an answer message
7047  */
7048 
7049  spi_width(starget) = wide;
7050  ncr_setwide(np, cp, wide, 1);
7051  spi_populate_width_msg(np->msgout, wide);
7052 
7053  np->msgin [0] = NOP;
7054 
7055  cp->nego_status = NS_WIDE;
7056 
7057  if (DEBUG_FLAGS & DEBUG_NEGO) {
7058  ncr_print_msg(cp, "wide msgout", np->msgin);
7059  }
7060  break;
7061 
7062 /*--------------------------------------------------------------------
7063 **
7064 ** Processing of special messages
7065 **
7066 **--------------------------------------------------------------------
7067 */
7068 
7069  case SIR_REJECT_RECEIVED:
7070  /*-----------------------------------------------
7071  **
7072  ** We received a MESSAGE_REJECT.
7073  **
7074  **-----------------------------------------------
7075  */
7076 
7077  PRINT_ADDR(cp->cmd, "MESSAGE_REJECT received (%x:%x).\n",
7078  (unsigned)scr_to_cpu(np->lastmsg), np->msgout[0]);
7079  break;
7080 
7081  case SIR_REJECT_SENT:
7082  /*-----------------------------------------------
7083  **
7084  ** We received an unknown message
7085  **
7086  **-----------------------------------------------
7087  */
7088 
7089  ncr_print_msg(cp, "MESSAGE_REJECT sent for", np->msgin);
7090  break;
7091 
7092 /*--------------------------------------------------------------------
7093 **
7094 ** Processing of special messages
7095 **
7096 **--------------------------------------------------------------------
7097 */
7098 
7099  case SIR_IGN_RESIDUE:
7100  /*-----------------------------------------------
7101  **
7102  ** We received an IGNORE RESIDUE message,
7103  ** which couldn't be handled by the script.
7104  **
7105  **-----------------------------------------------
7106  */
7107 
7108  PRINT_ADDR(cp->cmd, "IGNORE_WIDE_RESIDUE received, but not yet "
7109  "implemented.\n");
7110  break;
7111 #if 0
7112  case SIR_MISSING_SAVE:
7113  /*-----------------------------------------------
7114  **
7115  ** We received an DISCONNECT message,
7116  ** but the datapointer wasn't saved before.
7117  **
7118  **-----------------------------------------------
7119  */
7120 
7121  PRINT_ADDR(cp->cmd, "DISCONNECT received, but datapointer "
7122  "not saved: data=%x save=%x goal=%x.\n",
7123  (unsigned) INL (nc_temp),
7124  (unsigned) scr_to_cpu(np->header.savep),
7125  (unsigned) scr_to_cpu(np->header.goalp));
7126  break;
7127 #endif
7128  }
7129 
7130 out:
7131  OUTONB_STD ();
7132 }
7133 
7134 /*==========================================================
7135 **
7136 **
7137 ** Acquire a control block
7138 **
7139 **
7140 **==========================================================
7141 */
7142 
7143 static struct ccb *ncr_get_ccb(struct ncb *np, struct scsi_cmnd *cmd)
7144 {
7145  u_char tn = cmd->device->id;
7146  u_char ln = cmd->device->lun;
7147  struct tcb *tp = &np->target[tn];
7148  struct lcb *lp = tp->lp[ln];
7149  u_char tag = NO_TAG;
7150  struct ccb *cp = NULL;
7151 
7152  /*
7153  ** Lun structure available ?
7154  */
7155  if (lp) {
7156  struct list_head *qp;
7157  /*
7158  ** Keep from using more tags than we can handle.
7159  */
7160  if (lp->usetags && lp->busyccbs >= lp->maxnxs)
7161  return NULL;
7162 
7163  /*
7164  ** Allocate a new CCB if needed.
7165  */
7166  if (list_empty(&lp->free_ccbq))
7167  ncr_alloc_ccb(np, tn, ln);
7168 
7169  /*
7170  ** Look for free CCB
7171  */
7172  qp = ncr_list_pop(&lp->free_ccbq);
7173  if (qp) {
7174  cp = list_entry(qp, struct ccb, link_ccbq);
7175  if (cp->magic) {
7176  PRINT_ADDR(cmd, "ccb free list corrupted "
7177  "(@%p)\n", cp);
7178  cp = NULL;
7179  } else {
7180  list_add_tail(qp, &lp->wait_ccbq);
7181  ++lp->busyccbs;
7182  }
7183  }
7184 
7185  /*
7186  ** If a CCB is available,
7187  ** Get a tag for this nexus if required.
7188  */
7189  if (cp) {
7190  if (lp->usetags)
7191  tag = lp->cb_tags[lp->ia_tag];
7192  }
7193  else if (lp->actccbs > 0)
7194  return NULL;
7195  }
7196 
7197  /*
7198  ** if nothing available, take the default.
7199  */
7200  if (!cp)
7201  cp = np->ccb;
7202 
7203  /*
7204  ** Wait until available.
7205  */
7206 #if 0
7207  while (cp->magic) {
7208  if (flags & SCSI_NOSLEEP) break;
7209  if (tsleep ((caddr_t)cp, PRIBIO|PCATCH, "ncr", 0))
7210  break;
7211  }
7212 #endif
7213 
7214  if (cp->magic)
7215  return NULL;
7216 
7217  cp->magic = 1;
7218 
7219  /*
7220  ** Move to next available tag if tag used.
7221  */
7222  if (lp) {
7223  if (tag != NO_TAG) {
7224  ++lp->ia_tag;
7225  if (lp->ia_tag == MAX_TAGS)
7226  lp->ia_tag = 0;
7227  lp->tags_umap |= (((tagmap_t) 1) << tag);
7228  }
7229  }
7230 
7231  /*
7232  ** Remember all informations needed to free this CCB.
7233  */
7234  cp->tag = tag;
7235  cp->target = tn;
7236  cp->lun = ln;
7237 
7238  if (DEBUG_FLAGS & DEBUG_TAGS) {
7239  PRINT_ADDR(cmd, "ccb @%p using tag %d.\n", cp, tag);
7240  }
7241 
7242  return cp;
7243 }
7244 
7245 /*==========================================================
7246 **
7247 **
7248 ** Release one control block
7249 **
7250 **
7251 **==========================================================
7252 */
7253 
7254 static void ncr_free_ccb (struct ncb *np, struct ccb *cp)
7255 {
7256  struct tcb *tp = &np->target[cp->target];
7257  struct lcb *lp = tp->lp[cp->lun];
7258 
7259  if (DEBUG_FLAGS & DEBUG_TAGS) {
7260  PRINT_ADDR(cp->cmd, "ccb @%p freeing tag %d.\n", cp, cp->tag);
7261  }
7262 
7263  /*
7264  ** If lun control block available,
7265  ** decrement active commands and increment credit,
7266  ** free the tag if any and remove the JUMP for reselect.
7267  */
7268  if (lp) {
7269  if (cp->tag != NO_TAG) {
7270  lp->cb_tags[lp->if_tag++] = cp->tag;
7271  if (lp->if_tag == MAX_TAGS)
7272  lp->if_tag = 0;
7273  lp->tags_umap &= ~(((tagmap_t) 1) << cp->tag);
7274  lp->tags_smap &= lp->tags_umap;
7275  lp->jump_ccb[cp->tag] =
7276  cpu_to_scr(NCB_SCRIPTH_PHYS(np, bad_i_t_l_q));
7277  } else {
7278  lp->jump_ccb[0] =
7279  cpu_to_scr(NCB_SCRIPTH_PHYS(np, bad_i_t_l));
7280  }
7281  }
7282 
7283  /*
7284  ** Make this CCB available.
7285  */
7286 
7287  if (lp) {
7288  if (cp != np->ccb)
7289  list_move(&cp->link_ccbq, &lp->free_ccbq);
7290  --lp->busyccbs;
7291  if (cp->queued) {
7292  --lp->queuedccbs;
7293  }
7294  }
7295  cp -> host_status = HS_IDLE;
7296  cp -> magic = 0;
7297  if (cp->queued) {
7298  --np->queuedccbs;
7299  cp->queued = 0;
7300  }
7301 
7302 #if 0
7303  if (cp == np->ccb)
7304  wakeup ((caddr_t) cp);
7305 #endif
7306 }
7307 
7308 
7309 #define ncr_reg_bus_addr(r) (np->paddr + offsetof (struct ncr_reg, r))
7310 
7311 /*------------------------------------------------------------------------
7312 ** Initialize the fixed part of a CCB structure.
7313 **------------------------------------------------------------------------
7314 **------------------------------------------------------------------------
7315 */
7316 static void ncr_init_ccb(struct ncb *np, struct ccb *cp)
7317 {
7318  ncrcmd copy_4 = np->features & FE_PFEN ? SCR_COPY(4) : SCR_COPY_F(4);
7319 
7320  /*
7321  ** Remember virtual and bus address of this ccb.
7322  */
7323  cp->p_ccb = vtobus(cp);
7324  cp->phys.header.cp = cp;
7325 
7326  /*
7327  ** This allows list_del to work for the default ccb.
7328  */
7329  INIT_LIST_HEAD(&cp->link_ccbq);
7330 
7331  /*
7332  ** Initialyze the start and restart launch script.
7333  **
7334  ** COPY(4) @(...p_phys), @(dsa)
7335  ** JUMP @(sched_point)
7336  */
7337  cp->start.setup_dsa[0] = cpu_to_scr(copy_4);
7338  cp->start.setup_dsa[1] = cpu_to_scr(CCB_PHYS(cp, start.p_phys));
7339  cp->start.setup_dsa[2] = cpu_to_scr(ncr_reg_bus_addr(nc_dsa));
7340  cp->start.schedule.l_cmd = cpu_to_scr(SCR_JUMP);
7341  cp->start.p_phys = cpu_to_scr(CCB_PHYS(cp, phys));
7342 
7343  memcpy(&cp->restart, &cp->start, sizeof(cp->restart));
7344 
7345  cp->start.schedule.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, idle));
7346  cp->restart.schedule.l_paddr = cpu_to_scr(NCB_SCRIPTH_PHYS (np, abort));
7347 }
7348 
7349 
7350 /*------------------------------------------------------------------------
7351 ** Allocate a CCB and initialize its fixed part.
7352 **------------------------------------------------------------------------
7353 **------------------------------------------------------------------------
7354 */
7355 static void ncr_alloc_ccb(struct ncb *np, u_char tn, u_char ln)
7356 {
7357  struct tcb *tp = &np->target[tn];
7358  struct lcb *lp = tp->lp[ln];
7359  struct ccb *cp = NULL;
7360 
7361  /*
7362  ** Allocate memory for this CCB.
7363  */
7364  cp = m_calloc_dma(sizeof(struct ccb), "CCB");
7365  if (!cp)
7366  return;
7367 
7368  /*
7369  ** Count it and initialyze it.
7370  */
7371  lp->actccbs++;
7372  np->actccbs++;
7373  memset(cp, 0, sizeof (*cp));
7374  ncr_init_ccb(np, cp);
7375 
7376  /*
7377  ** Chain into wakeup list and free ccb queue and take it
7378  ** into account for tagged commands.
7379  */
7380  cp->link_ccb = np->ccb->link_ccb;
7381  np->ccb->link_ccb = cp;
7382 
7383  list_add(&cp->link_ccbq, &lp->free_ccbq);
7384 }
7385 
7386 /*==========================================================
7387 **
7388 **
7389 ** Allocation of resources for Targets/Luns/Tags.
7390 **
7391 **
7392 **==========================================================
7393 */
7394 
7395 
7396 /*------------------------------------------------------------------------
7397 ** Target control block initialisation.
7398 **------------------------------------------------------------------------
7399 ** This data structure is fully initialized after a SCSI command
7400 ** has been successfully completed for this target.
7401 ** It contains a SCRIPT that is called on target reselection.
7402 **------------------------------------------------------------------------
7403 */
7404 static void ncr_init_tcb (struct ncb *np, u_char tn)
7405 {
7406  struct tcb *tp = &np->target[tn];
7407  ncrcmd copy_1 = np->features & FE_PFEN ? SCR_COPY(1) : SCR_COPY_F(1);
7408  int th = tn & 3;
7409  int i;
7410 
7411  /*
7412  ** Jump to next tcb if SFBR does not match this target.
7413  ** JUMP IF (SFBR != #target#), @(next tcb)
7414  */
7415  tp->jump_tcb.l_cmd =
7416  cpu_to_scr((SCR_JUMP ^ IFFALSE (DATA (0x80 + tn))));
7417  tp->jump_tcb.l_paddr = np->jump_tcb[th].l_paddr;
7418 
7419  /*
7420  ** Load the synchronous transfer register.
7421  ** COPY @(tp->sval), @(sxfer)
7422  */
7423  tp->getscr[0] = cpu_to_scr(copy_1);
7424  tp->getscr[1] = cpu_to_scr(vtobus (&tp->sval));
7425 #ifdef SCSI_NCR_BIG_ENDIAN
7426  tp->getscr[2] = cpu_to_scr(ncr_reg_bus_addr(nc_sxfer) ^ 3);
7427 #else
7428  tp->getscr[2] = cpu_to_scr(ncr_reg_bus_addr(nc_sxfer));
7429 #endif
7430 
7431  /*
7432  ** Load the timing register.
7433  ** COPY @(tp->wval), @(scntl3)
7434  */
7435  tp->getscr[3] = cpu_to_scr(copy_1);
7436  tp->getscr[4] = cpu_to_scr(vtobus (&tp->wval));
7437 #ifdef SCSI_NCR_BIG_ENDIAN
7438  tp->getscr[5] = cpu_to_scr(ncr_reg_bus_addr(nc_scntl3) ^ 3);
7439 #else
7440  tp->getscr[5] = cpu_to_scr(ncr_reg_bus_addr(nc_scntl3));
7441 #endif
7442 
7443  /*
7444  ** Get the IDENTIFY message and the lun.
7445  ** CALL @script(resel_lun)
7446  */
7447  tp->call_lun.l_cmd = cpu_to_scr(SCR_CALL);
7448  tp->call_lun.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_lun));
7449 
7450  /*
7451  ** Look for the lun control block of this nexus.
7452  ** For i = 0 to 3
7453  ** JUMP ^ IFTRUE (MASK (i, 3)), @(next_lcb)
7454  */
7455  for (i = 0 ; i < 4 ; i++) {
7456  tp->jump_lcb[i].l_cmd =
7457  cpu_to_scr((SCR_JUMP ^ IFTRUE (MASK (i, 3))));
7458  tp->jump_lcb[i].l_paddr =
7459  cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_identify));
7460  }
7461 
7462  /*
7463  ** Link this target control block to the JUMP chain.
7464  */
7465  np->jump_tcb[th].l_paddr = cpu_to_scr(vtobus (&tp->jump_tcb));
7466 
7467  /*
7468  ** These assert's should be moved at driver initialisations.
7469  */
7470 #ifdef SCSI_NCR_BIG_ENDIAN
7471  BUG_ON(((offsetof(struct ncr_reg, nc_sxfer) ^
7472  offsetof(struct tcb , sval )) &3) != 3);
7473  BUG_ON(((offsetof(struct ncr_reg, nc_scntl3) ^
7474  offsetof(struct tcb , wval )) &3) != 3);
7475 #else
7476  BUG_ON(((offsetof(struct ncr_reg, nc_sxfer) ^
7477  offsetof(struct tcb , sval )) &3) != 0);
7478  BUG_ON(((offsetof(struct ncr_reg, nc_scntl3) ^
7479  offsetof(struct tcb , wval )) &3) != 0);
7480 #endif
7481 }
7482 
7483 
7484 /*------------------------------------------------------------------------
7485 ** Lun control block allocation and initialization.
7486 **------------------------------------------------------------------------
7487 ** This data structure is allocated and initialized after a SCSI
7488 ** command has been successfully completed for this target/lun.
7489 **------------------------------------------------------------------------
7490 */
7491 static struct lcb *ncr_alloc_lcb (struct ncb *np, u_char tn, u_char ln)
7492 {
7493  struct tcb *tp = &np->target[tn];
7494  struct lcb *lp = tp->lp[ln];
7495  ncrcmd copy_4 = np->features & FE_PFEN ? SCR_COPY(4) : SCR_COPY_F(4);
7496  int lh = ln & 3;
7497 
7498  /*
7499  ** Already done, return.
7500  */
7501  if (lp)
7502  return lp;
7503 
7504  /*
7505  ** Allocate the lcb.
7506  */
7507  lp = m_calloc_dma(sizeof(struct lcb), "LCB");
7508  if (!lp)
7509  goto fail;
7510  memset(lp, 0, sizeof(*lp));
7511  tp->lp[ln] = lp;
7512 
7513  /*
7514  ** Initialize the target control block if not yet.
7515  */
7516  if (!tp->jump_tcb.l_cmd)
7517  ncr_init_tcb(np, tn);
7518 
7519  /*
7520  ** Initialize the CCB queue headers.
7521  */
7522  INIT_LIST_HEAD(&lp->free_ccbq);
7523  INIT_LIST_HEAD(&lp->busy_ccbq);
7524  INIT_LIST_HEAD(&lp->wait_ccbq);
7525  INIT_LIST_HEAD(&lp->skip_ccbq);
7526 
7527  /*
7528  ** Set max CCBs to 1 and use the default 1 entry
7529  ** jump table by default.
7530  */
7531  lp->maxnxs = 1;
7532  lp->jump_ccb = &lp->jump_ccb_0;
7533  lp->p_jump_ccb = cpu_to_scr(vtobus(lp->jump_ccb));
7534 
7535  /*
7536  ** Initilialyze the reselect script:
7537  **
7538  ** Jump to next lcb if SFBR does not match this lun.
7539  ** Load TEMP with the CCB direct jump table bus address.
7540  ** Get the SIMPLE TAG message and the tag.
7541  **
7542  ** JUMP IF (SFBR != #lun#), @(next lcb)
7543  ** COPY @(lp->p_jump_ccb), @(temp)
7544  ** JUMP @script(resel_notag)
7545  */
7546  lp->jump_lcb.l_cmd =
7547  cpu_to_scr((SCR_JUMP ^ IFFALSE (MASK (0x80+ln, 0xff))));
7548  lp->jump_lcb.l_paddr = tp->jump_lcb[lh].l_paddr;
7549 
7550  lp->load_jump_ccb[0] = cpu_to_scr(copy_4);
7551  lp->load_jump_ccb[1] = cpu_to_scr(vtobus (&lp->p_jump_ccb));
7552  lp->load_jump_ccb[2] = cpu_to_scr(ncr_reg_bus_addr(nc_temp));
7553 
7554  lp->jump_tag.l_cmd = cpu_to_scr(SCR_JUMP);
7555  lp->jump_tag.l_paddr = cpu_to_scr(NCB_SCRIPT_PHYS (np, resel_notag));
7556 
7557  /*
7558  ** Link this lun control block to the JUMP chain.
7559  */
7560  tp->jump_lcb[lh].l_paddr = cpu_to_scr(vtobus (&lp->jump_lcb));
7561 
7562  /*
7563  ** Initialize command queuing control.
7564  */
7565  lp->busyccbs = 1;
7566  lp->queuedccbs = 1;
7567  lp->queuedepth = 1;
7568 fail:
7569  return lp;
7570 }
7571 
7572 
7573 /*------------------------------------------------------------------------
7574 ** Lun control block setup on INQUIRY data received.
7575 **------------------------------------------------------------------------
7576 ** We only support WIDE, SYNC for targets and CMDQ for logical units.
7577 ** This setup is done on each INQUIRY since we are expecting user
7578 ** will play with CHANGE DEFINITION commands. :-)
7579 **------------------------------------------------------------------------
7580 */
7581 static struct lcb *ncr_setup_lcb (struct ncb *np, struct scsi_device *sdev)
7582 {
7583  unsigned char tn = sdev->id, ln = sdev->lun;
7584  struct tcb *tp = &np->target[tn];
7585  struct lcb *lp = tp->lp[ln];
7586 
7587  /* If no lcb, try to allocate it. */
7588  if (!lp && !(lp = ncr_alloc_lcb(np, tn, ln)))
7589  goto fail;
7590 
7591  /*
7592  ** If unit supports tagged commands, allocate the
7593  ** CCB JUMP table if not yet.
7594  */
7595  if (sdev->tagged_supported && lp->jump_ccb == &lp->jump_ccb_0) {
7596  int i;
7597  lp->jump_ccb = m_calloc_dma(256, "JUMP_CCB");
7598  if (!lp->jump_ccb) {
7599  lp->jump_ccb = &lp->jump_ccb_0;
7600  goto fail;
7601  }
7602  lp->p_jump_ccb = cpu_to_scr(vtobus(lp->jump_ccb));
7603  for (i = 0 ; i < 64 ; i++)
7604  lp->jump_ccb[i] =
7605  cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_i_t_l_q));
7606  for (i = 0 ; i < MAX_TAGS ; i++)
7607  lp->cb_tags[i] = i;
7608  lp->maxnxs = MAX_TAGS;
7609  lp->tags_stime = jiffies + 3*HZ;
7610  ncr_setup_tags (np, sdev);
7611  }
7612 
7613 
7614 fail:
7615  return lp;
7616 }
7617 
7618 /*==========================================================
7619 **
7620 **
7621 ** Build Scatter Gather Block
7622 **
7623 **
7624 **==========================================================
7625 **
7626 ** The transfer area may be scattered among
7627 ** several non adjacent physical pages.
7628 **
7629 ** We may use MAX_SCATTER blocks.
7630 **
7631 **----------------------------------------------------------
7632 */
7633 
7634 /*
7635 ** We try to reduce the number of interrupts caused
7636 ** by unexpected phase changes due to disconnects.
7637 ** A typical harddisk may disconnect before ANY block.
7638 ** If we wanted to avoid unexpected phase changes at all
7639 ** we had to use a break point every 512 bytes.
7640 ** Of course the number of scatter/gather blocks is
7641 ** limited.
7642 ** Under Linux, the scatter/gatter blocks are provided by
7643 ** the generic driver. We just have to copy addresses and
7644 ** sizes to the data segment array.
7645 */
7646 
7647 static int ncr_scatter(struct ncb *np, struct ccb *cp, struct scsi_cmnd *cmd)
7648 {
7649  int segment = 0;
7650  int use_sg = scsi_sg_count(cmd);
7651 
7652  cp->data_len = 0;
7653 
7654  use_sg = map_scsi_sg_data(np, cmd);
7655  if (use_sg > 0) {
7656  struct scatterlist *sg;
7657  struct scr_tblmove *data;
7658 
7659  if (use_sg > MAX_SCATTER) {
7660  unmap_scsi_data(np, cmd);
7661  return -1;
7662  }
7663 
7664  data = &cp->phys.data[MAX_SCATTER - use_sg];
7665 
7666  scsi_for_each_sg(cmd, sg, use_sg, segment) {
7667  dma_addr_t baddr = sg_dma_address(sg);
7668  unsigned int len = sg_dma_len(sg);
7669 
7670  ncr_build_sge(np, &data[segment], baddr, len);
7671  cp->data_len += len;
7672  }
7673  } else
7674  segment = -2;
7675 
7676  return segment;
7677 }
7678 
7679 /*==========================================================
7680 **
7681 **
7682 ** Test the bus snoop logic :-(
7683 **
7684 ** Has to be called with interrupts disabled.
7685 **
7686 **
7687 **==========================================================
7688 */
7689 
7690 static int __init ncr_regtest (struct ncb* np)
7691 {
7692  register volatile u32 data;
7693  /*
7694  ** ncr registers may NOT be cached.
7695  ** write 0xffffffff to a read only register area,
7696  ** and try to read it back.
7697  */
7698  data = 0xffffffff;
7699  OUTL_OFF(offsetof(struct ncr_reg, nc_dstat), data);
7700  data = INL_OFF(offsetof(struct ncr_reg, nc_dstat));
7701 #if 1
7702  if (data == 0xffffffff) {
7703 #else
7704  if ((data & 0xe2f0fffd) != 0x02000080) {
7705 #endif
7706  printk ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
7707  (unsigned) data);
7708  return (0x10);
7709  }
7710  return (0);
7711 }
7712 
7713 static int __init ncr_snooptest (struct ncb* np)
7714 {
7715  u32 ncr_rd, ncr_wr, ncr_bk, host_rd, host_wr, pc;
7716  int i, err=0;
7717  if (np->reg) {
7718  err |= ncr_regtest (np);
7719  if (err)
7720  return (err);
7721  }
7722 
7723  /* init */
7724  pc = NCB_SCRIPTH_PHYS (np, snooptest);
7725  host_wr = 1;
7726  ncr_wr = 2;
7727  /*
7728  ** Set memory and register.
7729  */
7730  np->ncr_cache = cpu_to_scr(host_wr);
7731  OUTL (nc_temp, ncr_wr);
7732  /*
7733  ** Start script (exchange values)
7734  */
7735  OUTL_DSP (pc);
7736  /*
7737  ** Wait 'til done (with timeout)
7738  */
7739  for (i=0; i<NCR_SNOOP_TIMEOUT; i++)
7740  if (INB(nc_istat) & (INTF|SIP|DIP))
7741  break;
7742  /*
7743  ** Save termination position.
7744  */
7745  pc = INL (nc_dsp);
7746  /*
7747  ** Read memory and register.
7748  */
7749  host_rd = scr_to_cpu(np->ncr_cache);
7750  ncr_rd = INL (nc_scratcha);
7751  ncr_bk = INL (nc_temp);
7752  /*
7753  ** Reset ncr chip
7754  */
7755  ncr_chip_reset(np, 100);
7756  /*
7757  ** check for timeout
7758  */
7759  if (i>=NCR_SNOOP_TIMEOUT) {
7760  printk ("CACHE TEST FAILED: timeout.\n");
7761  return (0x20);
7762  }
7763  /*
7764  ** Check termination position.
7765  */
7766  if (pc != NCB_SCRIPTH_PHYS (np, snoopend)+8) {
7767  printk ("CACHE TEST FAILED: script execution failed.\n");
7768  printk ("start=%08lx, pc=%08lx, end=%08lx\n",
7769  (u_long) NCB_SCRIPTH_PHYS (np, snooptest), (u_long) pc,
7770  (u_long) NCB_SCRIPTH_PHYS (np, snoopend) +8);
7771  return (0x40);
7772  }
7773  /*
7774  ** Show results.
7775  */
7776  if (host_wr != ncr_rd) {
7777  printk ("CACHE TEST FAILED: host wrote %d, ncr read %d.\n",
7778  (int) host_wr, (int) ncr_rd);
7779  err |= 1;
7780  }
7781  if (host_rd != ncr_wr) {
7782  printk ("CACHE TEST FAILED: ncr wrote %d, host read %d.\n",
7783  (int) ncr_wr, (int) host_rd);
7784  err |= 2;
7785  }
7786  if (ncr_bk != ncr_wr) {
7787  printk ("CACHE TEST FAILED: ncr wrote %d, read back %d.\n",
7788  (int) ncr_wr, (int) ncr_bk);
7789  err |= 4;
7790  }
7791  return (err);
7792 }
7793 
7794 /*==========================================================
7795 **
7796 ** Determine the ncr's clock frequency.
7797 ** This is essential for the negotiation
7798 ** of the synchronous transfer rate.
7799 **
7800 **==========================================================
7801 **
7802 ** Note: we have to return the correct value.
7803 ** THERE IS NO SAFE DEFAULT VALUE.
7804 **
7805 ** Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
7806 ** 53C860 and 53C875 rev. 1 support fast20 transfers but
7807 ** do not have a clock doubler and so are provided with a
7808 ** 80 MHz clock. All other fast20 boards incorporate a doubler
7809 ** and so should be delivered with a 40 MHz clock.
7810 ** The future fast40 chips (895/895) use a 40 Mhz base clock
7811 ** and provide a clock quadrupler (160 Mhz). The code below
7812 ** tries to deal as cleverly as possible with all this stuff.
7813 **
7814 **----------------------------------------------------------
7815 */
7816 
7817 /*
7818  * Select NCR SCSI clock frequency
7819  */
7820 static void ncr_selectclock(struct ncb *np, u_char scntl3)
7821 {
7822  if (np->multiplier < 2) {
7823  OUTB(nc_scntl3, scntl3);
7824  return;
7825  }
7826 
7827  if (bootverbose >= 2)
7828  printk ("%s: enabling clock multiplier\n", ncr_name(np));
7829 
7830  OUTB(nc_stest1, DBLEN); /* Enable clock multiplier */
7831  if (np->multiplier > 2) { /* Poll bit 5 of stest4 for quadrupler */
7832  int i = 20;
7833  while (!(INB(nc_stest4) & LCKFRQ) && --i > 0)
7834  udelay(20);
7835  if (!i)
7836  printk("%s: the chip cannot lock the frequency\n", ncr_name(np));
7837  } else /* Wait 20 micro-seconds for doubler */
7838  udelay(20);
7839  OUTB(nc_stest3, HSC); /* Halt the scsi clock */
7840  OUTB(nc_scntl3, scntl3);
7841  OUTB(nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */
7842  OUTB(nc_stest3, 0x00); /* Restart scsi clock */
7843 }
7844 
7845 
7846 /*
7847  * calculate NCR SCSI clock frequency (in KHz)
7848  */
7849 static unsigned __init ncrgetfreq (struct ncb *np, int gen)
7850 {
7851  unsigned ms = 0;
7852  char count = 0;
7853 
7854  /*
7855  * Measure GEN timer delay in order
7856  * to calculate SCSI clock frequency
7857  *
7858  * This code will never execute too
7859  * many loop iterations (if DELAY is
7860  * reasonably correct). It could get
7861  * too low a delay (too high a freq.)
7862  * if the CPU is slow executing the
7863  * loop for some reason (an NMI, for
7864  * example). For this reason we will
7865  * if multiple measurements are to be
7866  * performed trust the higher delay
7867  * (lower frequency returned).
7868  */
7869  OUTB (nc_stest1, 0); /* make sure clock doubler is OFF */
7870  OUTW (nc_sien , 0); /* mask all scsi interrupts */
7871  (void) INW (nc_sist); /* clear pending scsi interrupt */
7872  OUTB (nc_dien , 0); /* mask all dma interrupts */
7873  (void) INW (nc_sist); /* another one, just to be sure :) */
7874  OUTB (nc_scntl3, 4); /* set pre-scaler to divide by 3 */
7875  OUTB (nc_stime1, 0); /* disable general purpose timer */
7876  OUTB (nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */
7877  while (!(INW(nc_sist) & GEN) && ms++ < 100000) {
7878  for (count = 0; count < 10; count ++)
7879  udelay(100); /* count ms */
7880  }
7881  OUTB (nc_stime1, 0); /* disable general purpose timer */
7882  /*
7883  * set prescaler to divide by whatever 0 means
7884  * 0 ought to choose divide by 2, but appears
7885  * to set divide by 3.5 mode in my 53c810 ...
7886  */
7887  OUTB (nc_scntl3, 0);
7888 
7889  if (bootverbose >= 2)
7890  printk ("%s: Delay (GEN=%d): %u msec\n", ncr_name(np), gen, ms);
7891  /*
7892  * adjust for prescaler, and convert into KHz
7893  */
7894  return ms ? ((1 << gen) * 4340) / ms : 0;
7895 }
7896 
7897 /*
7898  * Get/probe NCR SCSI clock frequency
7899  */
7900 static void __init ncr_getclock (struct ncb *np, int mult)
7901 {
7902  unsigned char scntl3 = INB(nc_scntl3);
7903  unsigned char stest1 = INB(nc_stest1);
7904  unsigned f1;
7905 
7906  np->multiplier = 1;
7907  f1 = 40000;
7908 
7909  /*
7910  ** True with 875 or 895 with clock multiplier selected
7911  */
7912  if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
7913  if (bootverbose >= 2)
7914  printk ("%s: clock multiplier found\n", ncr_name(np));
7915  np->multiplier = mult;
7916  }
7917 
7918  /*
7919  ** If multiplier not found or scntl3 not 7,5,3,
7920  ** reset chip and get frequency from general purpose timer.
7921  ** Otherwise trust scntl3 BIOS setting.
7922  */
7923  if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
7924  unsigned f2;
7925 
7926  ncr_chip_reset(np, 5);
7927 
7928  (void) ncrgetfreq (np, 11); /* throw away first result */
7929  f1 = ncrgetfreq (np, 11);
7930  f2 = ncrgetfreq (np, 11);
7931 
7932  if(bootverbose)
7933  printk ("%s: NCR clock is %uKHz, %uKHz\n", ncr_name(np), f1, f2);
7934 
7935  if (f1 > f2) f1 = f2; /* trust lower result */
7936 
7937  if (f1 < 45000) f1 = 40000;
7938  else if (f1 < 55000) f1 = 50000;
7939  else f1 = 80000;
7940 
7941  if (f1 < 80000 && mult > 1) {
7942  if (bootverbose >= 2)
7943  printk ("%s: clock multiplier assumed\n", ncr_name(np));
7944  np->multiplier = mult;
7945  }
7946  } else {
7947  if ((scntl3 & 7) == 3) f1 = 40000;
7948  else if ((scntl3 & 7) == 5) f1 = 80000;
7949  else f1 = 160000;
7950 
7951  f1 /= np->multiplier;
7952  }
7953 
7954  /*
7955  ** Compute controller synchronous parameters.
7956  */
7957  f1 *= np->multiplier;
7958  np->clock_khz = f1;
7959 }
7960 
7961 /*===================== LINUX ENTRY POINTS SECTION ==========================*/
7962 
7963 static int ncr53c8xx_slave_alloc(struct scsi_device *device)
7964 {
7965  struct Scsi_Host *host = device->host;
7966  struct ncb *np = ((struct host_data *) host->hostdata)->ncb;
7967  struct tcb *tp = &np->target[device->id];
7968  tp->starget = device->sdev_target;
7969 
7970  return 0;
7971 }
7972 
7973 static int ncr53c8xx_slave_configure(struct scsi_device *device)
7974 {
7975  struct Scsi_Host *host = device->host;
7976  struct ncb *np = ((struct host_data *) host->hostdata)->ncb;
7977  struct tcb *tp = &np->target[device->id];
7978  struct lcb *lp = tp->lp[device->lun];
7979  int numtags, depth_to_use;
7980 
7981  ncr_setup_lcb(np, device);
7982 
7983  /*
7984  ** Select queue depth from driver setup.
7985  ** Donnot use more than configured by user.
7986  ** Use at least 2.
7987  ** Donnot use more than our maximum.
7988  */
7989  numtags = device_queue_depth(np->unit, device->id, device->lun);
7990  if (numtags > tp->usrtags)
7991  numtags = tp->usrtags;
7992  if (!device->tagged_supported)
7993  numtags = 1;
7994  depth_to_use = numtags;
7995  if (depth_to_use < 2)
7996  depth_to_use = 2;
7997  if (depth_to_use > MAX_TAGS)
7998  depth_to_use = MAX_TAGS;
7999 
8000  scsi_adjust_queue_depth(device,
8001  (device->tagged_supported ?
8002  MSG_SIMPLE_TAG : 0),
8003  depth_to_use);
8004 
8005  /*
8006  ** Since the queue depth is not tunable under Linux,
8007  ** we need to know this value in order not to
8008  ** announce stupid things to user.
8009  **
8010  ** XXX(hch): As of Linux 2.6 it certainly _is_ tunable..
8011  ** In fact we just tuned it, or did I miss
8012  ** something important? :)
8013  */
8014  if (lp) {
8015  lp->numtags = lp->maxtags = numtags;
8016  lp->scdev_depth = depth_to_use;
8017  }
8018  ncr_setup_tags (np, device);
8019 
8020 #ifdef DEBUG_NCR53C8XX
8021  printk("ncr53c8xx_select_queue_depth: host=%d, id=%d, lun=%d, depth=%d\n",
8022  np->unit, device->id, device->lun, depth_to_use);
8023 #endif
8024 
8025  if (spi_support_sync(device->sdev_target) &&
8026  !spi_initial_dv(device->sdev_target))
8027  spi_dv_device(device);
8028  return 0;
8029 }
8030 
8031 static int ncr53c8xx_queue_command_lck (struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *))
8032 {
8033  struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb;
8034  unsigned long flags;
8035  int sts;
8036 
8037 #ifdef DEBUG_NCR53C8XX
8038 printk("ncr53c8xx_queue_command\n");
8039 #endif
8040 
8041  cmd->scsi_done = done;
8042  cmd->host_scribble = NULL;
8043  cmd->__data_mapped = 0;
8044  cmd->__data_mapping = 0;
8045 
8046  spin_lock_irqsave(&np->smp_lock, flags);
8047 
8048  if ((sts = ncr_queue_command(np, cmd)) != DID_OK) {
8049  cmd->result = ScsiResult(sts, 0);
8050 #ifdef DEBUG_NCR53C8XX
8051 printk("ncr53c8xx : command not queued - result=%d\n", sts);
8052 #endif
8053  }
8054 #ifdef DEBUG_NCR53C8XX
8055  else
8056 printk("ncr53c8xx : command successfully queued\n");
8057 #endif
8058 
8059  spin_unlock_irqrestore(&np->smp_lock, flags);
8060 
8061  if (sts != DID_OK) {
8062  unmap_scsi_data(np, cmd);
8063  done(cmd);
8064  sts = 0;
8065  }
8066 
8067  return sts;
8068 }
8069 
8070 static DEF_SCSI_QCMD(ncr53c8xx_queue_command)
8071 
8072 irqreturn_t ncr53c8xx_intr(int irq, void *dev_id)
8073 {
8074  unsigned long flags;
8075  struct Scsi_Host *shost = (struct Scsi_Host *)dev_id;
8076  struct host_data *host_data = (struct host_data *)shost->hostdata;
8077  struct ncb *np = host_data->ncb;
8078  struct scsi_cmnd *done_list;
8079 
8080 #ifdef DEBUG_NCR53C8XX
8081  printk("ncr53c8xx : interrupt received\n");
8082 #endif
8083 
8084  if (DEBUG_FLAGS & DEBUG_TINY) printk ("[");
8085 
8086  spin_lock_irqsave(&np->smp_lock, flags);
8087  ncr_exception(np);
8088  done_list = np->done_list;
8089  np->done_list = NULL;
8090  spin_unlock_irqrestore(&np->smp_lock, flags);
8091 
8092  if (DEBUG_FLAGS & DEBUG_TINY) printk ("]\n");
8093 
8094  if (done_list)
8095  ncr_flush_done_cmds(done_list);
8096  return IRQ_HANDLED;
8097 }
8098 
8099 static void ncr53c8xx_timeout(unsigned long npref)
8100 {
8101  struct ncb *np = (struct ncb *) npref;
8102  unsigned long flags;
8103  struct scsi_cmnd *done_list;
8104 
8105  spin_lock_irqsave(&np->smp_lock, flags);
8106  ncr_timeout(np);
8107  done_list = np->done_list;
8108  np->done_list = NULL;
8109  spin_unlock_irqrestore(&np->smp_lock, flags);
8110 
8111  if (done_list)
8112  ncr_flush_done_cmds(done_list);
8113 }
8114 
8115 static int ncr53c8xx_bus_reset(struct scsi_cmnd *cmd)
8116 {
8117  struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb;
8118  int sts;
8119  unsigned long flags;
8120  struct scsi_cmnd *done_list;
8121 
8122  /*
8123  * If the mid-level driver told us reset is synchronous, it seems
8124  * that we must call the done() callback for the involved command,
8125  * even if this command was not queued to the low-level driver,
8126  * before returning SUCCESS.
8127  */
8128 
8129  spin_lock_irqsave(&np->smp_lock, flags);
8130  sts = ncr_reset_bus(np, cmd, 1);
8131 
8132  done_list = np->done_list;
8133  np->done_list = NULL;
8134  spin_unlock_irqrestore(&np->smp_lock, flags);
8135 
8136  ncr_flush_done_cmds(done_list);
8137 
8138  return sts;
8139 }
8140 
8141 #if 0 /* unused and broken */
8142 static int ncr53c8xx_abort(struct scsi_cmnd *cmd)
8143 {
8144  struct ncb *np = ((struct host_data *) cmd->device->host->hostdata)->ncb;
8145  int sts;
8146  unsigned long flags;
8147  struct scsi_cmnd *done_list;
8148 
8149  printk("ncr53c8xx_abort\n");
8150 
8151  NCR_LOCK_NCB(np, flags);
8152 
8153  sts = ncr_abort_command(np, cmd);
8154 out:
8155  done_list = np->done_list;
8156  np->done_list = NULL;
8157  NCR_UNLOCK_NCB(np, flags);
8158 
8159  ncr_flush_done_cmds(done_list);
8160 
8161  return sts;
8162 }
8163 #endif
8164 
8165 
8166 /*
8167 ** Scsi command waiting list management.
8168 **
8169 ** It may happen that we cannot insert a scsi command into the start queue,
8170 ** in the following circumstances.
8171 ** Too few preallocated ccb(s),
8172 ** maxtags < cmd_per_lun of the Linux host control block,
8173 ** etc...
8174 ** Such scsi commands are inserted into a waiting list.
8175 ** When a scsi command complete, we try to requeue the commands of the
8176 ** waiting list.
8177 */
8178 
8179 #define next_wcmd host_scribble
8180 
8181 static void insert_into_waiting_list(struct ncb *np, struct scsi_cmnd *cmd)
8182 {
8183  struct scsi_cmnd *wcmd;
8184 
8185 #ifdef DEBUG_WAITING_LIST
8186  printk("%s: cmd %lx inserted into waiting list\n", ncr_name(np), (u_long) cmd);
8187 #endif
8188  cmd->next_wcmd = NULL;
8189  if (!(wcmd = np->waiting_list)) np->waiting_list = cmd;
8190  else {
8191  while (wcmd->next_wcmd)
8192  wcmd = (struct scsi_cmnd *) wcmd->next_wcmd;
8193  wcmd->next_wcmd = (char *) cmd;
8194  }
8195 }
8196 
8197 static struct scsi_cmnd *retrieve_from_waiting_list(int to_remove, struct ncb *np, struct scsi_cmnd *cmd)
8198 {
8199  struct scsi_cmnd **pcmd = &np->waiting_list;
8200 
8201  while (*pcmd) {
8202  if (cmd == *pcmd) {
8203  if (to_remove) {
8204  *pcmd = (struct scsi_cmnd *) cmd->next_wcmd;
8205  cmd->next_wcmd = NULL;
8206  }
8207 #ifdef DEBUG_WAITING_LIST
8208  printk("%s: cmd %lx retrieved from waiting list\n", ncr_name(np), (u_long) cmd);
8209 #endif
8210  return cmd;
8211  }
8212  pcmd = (struct scsi_cmnd **) &(*pcmd)->next_wcmd;
8213  }
8214  return NULL;
8215 }
8216 
8217 static void process_waiting_list(struct ncb *np, int sts)
8218 {
8219  struct scsi_cmnd *waiting_list, *wcmd;
8220 
8221  waiting_list = np->waiting_list;
8222  np->waiting_list = NULL;
8223 
8224 #ifdef DEBUG_WAITING_LIST
8225  if (waiting_list) printk("%s: waiting_list=%lx processing sts=%d\n", ncr_name(np), (u_long) waiting_list, sts);
8226 #endif
8227  while ((wcmd = waiting_list) != NULL) {
8228  waiting_list = (struct scsi_cmnd *) wcmd->next_wcmd;
8229  wcmd->next_wcmd = NULL;
8230  if (sts == DID_OK) {
8231 #ifdef DEBUG_WAITING_LIST
8232  printk("%s: cmd %lx trying to requeue\n", ncr_name(np), (u_long) wcmd);
8233 #endif
8234  sts = ncr_queue_command(np, wcmd);
8235  }
8236  if (sts != DID_OK) {
8237 #ifdef DEBUG_WAITING_LIST
8238  printk("%s: cmd %lx done forced sts=%d\n", ncr_name(np), (u_long) wcmd, sts);
8239 #endif
8240  wcmd->result = ScsiResult(sts, 0);
8241  ncr_queue_done_cmd(np, wcmd);
8242  }
8243  }
8244 }
8245 
8246 #undef next_wcmd
8247 
8248 static ssize_t show_ncr53c8xx_revision(struct device *dev,
8249  struct device_attribute *attr, char *buf)
8250 {
8251  struct Scsi_Host *host = class_to_shost(dev);
8252  struct host_data *host_data = (struct host_data *)host->hostdata;
8253 
8254  return snprintf(buf, 20, "0x%x\n", host_data->ncb->revision_id);
8255 }
8256 
8257 static struct device_attribute ncr53c8xx_revision_attr = {
8258  .attr = { .name = "revision", .mode = S_IRUGO, },
8259  .show = show_ncr53c8xx_revision,
8260 };
8261 
8262 static struct device_attribute *ncr53c8xx_host_attrs[] = {
8263  &ncr53c8xx_revision_attr,
8264  NULL
8265 };
8266 
8267 /*==========================================================
8268 **
8269 ** Boot command line.
8270 **
8271 **==========================================================
8272 */
8273 #ifdef MODULE
8274 char *ncr53c8xx; /* command line passed by insmod */
8275 module_param(ncr53c8xx, charp, 0);
8276 #endif
8277 
8278 #ifndef MODULE
8279 static int __init ncr53c8xx_setup(char *str)
8280 {
8281  return sym53c8xx__setup(str);
8282 }
8283 
8284 __setup("ncr53c8xx=", ncr53c8xx_setup);
8285 #endif
8286 
8287 
8288 /*
8289  * Host attach and initialisations.
8290  *
8291  * Allocate host data and ncb structure.
8292  * Request IO region and remap MMIO region.
8293  * Do chip initialization.
8294  * If all is OK, install interrupt handling and
8295  * start the timer daemon.
8296  */
8298  int unit, struct ncr_device *device)
8299 {
8300  struct host_data *host_data;
8301  struct ncb *np = NULL;
8302  struct Scsi_Host *instance = NULL;
8303  u_long flags = 0;
8304  int i;
8305 
8306  if (!tpnt->name)
8307  tpnt->name = SCSI_NCR_DRIVER_NAME;
8308  if (!tpnt->shost_attrs)
8309  tpnt->shost_attrs = ncr53c8xx_host_attrs;
8310 
8311  tpnt->queuecommand = ncr53c8xx_queue_command;
8312  tpnt->slave_configure = ncr53c8xx_slave_configure;
8313  tpnt->slave_alloc = ncr53c8xx_slave_alloc;
8314  tpnt->eh_bus_reset_handler = ncr53c8xx_bus_reset;
8315  tpnt->can_queue = SCSI_NCR_CAN_QUEUE;
8316  tpnt->this_id = 7;
8320 
8321  if (device->differential)
8322  driver_setup.diff_support = device->differential;
8323 
8324  printk(KERN_INFO "ncr53c720-%d: rev 0x%x irq %d\n",
8325  unit, device->chip.revision_id, device->slot.irq);
8326 
8327  instance = scsi_host_alloc(tpnt, sizeof(*host_data));
8328  if (!instance)
8329  goto attach_error;
8330  host_data = (struct host_data *) instance->hostdata;
8331 
8332  np = __m_calloc_dma(device->dev, sizeof(struct ncb), "NCB");
8333  if (!np)
8334  goto attach_error;
8335  spin_lock_init(&np->smp_lock);
8336  np->dev = device->dev;
8337  np->p_ncb = vtobus(np);
8338  host_data->ncb = np;
8339 
8340  np->ccb = m_calloc_dma(sizeof(struct ccb), "CCB");
8341  if (!np->ccb)
8342  goto attach_error;
8343 
8344  /* Store input information in the host data structure. */
8345  np->unit = unit;
8346  np->verbose = driver_setup.verbose;
8347  sprintf(np->inst_name, "ncr53c720-%d", np->unit);
8348  np->revision_id = device->chip.revision_id;
8349  np->features = device->chip.features;
8350  np->clock_divn = device->chip.nr_divisor;
8351  np->maxoffs = device->chip.offset_max;
8352  np->maxburst = device->chip.burst_max;
8353  np->myaddr = device->host_id;
8354 
8355  /* Allocate SCRIPTS areas. */
8356  np->script0 = m_calloc_dma(sizeof(struct script), "SCRIPT");
8357  if (!np->script0)
8358  goto attach_error;
8359  np->scripth0 = m_calloc_dma(sizeof(struct scripth), "SCRIPTH");
8360  if (!np->scripth0)
8361  goto attach_error;
8362 
8363  init_timer(&np->timer);
8364  np->timer.data = (unsigned long) np;
8365  np->timer.function = ncr53c8xx_timeout;
8366 
8367  /* Try to map the controller chip to virtual and physical memory. */
8368 
8369  np->paddr = device->slot.base;
8370  np->paddr2 = (np->features & FE_RAM) ? device->slot.base_2 : 0;
8371 
8372  if (device->slot.base_v)
8373  np->vaddr = device->slot.base_v;
8374  else
8375  np->vaddr = ioremap(device->slot.base_c, 128);
8376 
8377  if (!np->vaddr) {
8379  "%s: can't map memory mapped IO region\n",ncr_name(np));
8380  goto attach_error;
8381  } else {
8382  if (bootverbose > 1)
8384  "%s: using memory mapped IO at virtual address 0x%lx\n", ncr_name(np), (u_long) np->vaddr);
8385  }
8386 
8387  /* Make the controller's registers available. Now the INB INW INL
8388  * OUTB OUTW OUTL macros can be used safely.
8389  */
8390 
8391  np->reg = (struct ncr_reg __iomem *)np->vaddr;
8392 
8393  /* Do chip dependent initialization. */
8394  ncr_prepare_setting(np);
8395 
8396  if (np->paddr2 && sizeof(struct script) > 4096) {
8397  np->paddr2 = 0;
8398  printk(KERN_WARNING "%s: script too large, NOT using on chip RAM.\n",
8399  ncr_name(np));
8400  }
8401 
8402  instance->max_channel = 0;
8403  instance->this_id = np->myaddr;
8404  instance->max_id = np->maxwide ? 16 : 8;
8405  instance->max_lun = SCSI_NCR_MAX_LUN;
8406  instance->base = (unsigned long) np->reg;
8407  instance->irq = device->slot.irq;
8408  instance->unique_id = device->slot.base;
8409  instance->dma_channel = 0;
8410  instance->cmd_per_lun = MAX_TAGS;
8411  instance->can_queue = (MAX_START-4);
8412  /* This can happen if you forget to call ncr53c8xx_init from
8413  * your module_init */
8414  BUG_ON(!ncr53c8xx_transport_template);
8415  instance->transportt = ncr53c8xx_transport_template;
8416 
8417  /* Patch script to physical addresses */
8418  ncr_script_fill(&script0, &scripth0);
8419 
8420  np->scripth = np->scripth0;
8421  np->p_scripth = vtobus(np->scripth);
8422  np->p_script = (np->paddr2) ? np->paddr2 : vtobus(np->script0);
8423 
8424  ncr_script_copy_and_bind(np, (ncrcmd *) &script0,
8425  (ncrcmd *) np->script0, sizeof(struct script));
8426  ncr_script_copy_and_bind(np, (ncrcmd *) &scripth0,
8427  (ncrcmd *) np->scripth0, sizeof(struct scripth));
8428  np->ccb->p_ccb = vtobus (np->ccb);
8429 
8430  /* Patch the script for LED support. */
8431 
8432  if (np->features & FE_LED0) {
8433  np->script0->idle[0] =
8434  cpu_to_scr(SCR_REG_REG(gpreg, SCR_OR, 0x01));
8435  np->script0->reselected[0] =
8436  cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe));
8437  np->script0->start[0] =
8438  cpu_to_scr(SCR_REG_REG(gpreg, SCR_AND, 0xfe));
8439  }
8440 
8441  /*
8442  * Look for the target control block of this nexus.
8443  * For i = 0 to 3
8444  * JUMP ^ IFTRUE (MASK (i, 3)), @(next_lcb)
8445  */
8446  for (i = 0 ; i < 4 ; i++) {
8447  np->jump_tcb[i].l_cmd =
8448  cpu_to_scr((SCR_JUMP ^ IFTRUE (MASK (i, 3))));
8449  np->jump_tcb[i].l_paddr =
8450  cpu_to_scr(NCB_SCRIPTH_PHYS (np, bad_target));
8451  }
8452 
8453  ncr_chip_reset(np, 100);
8454 
8455  /* Now check the cache handling of the chipset. */
8456 
8457  if (ncr_snooptest(np)) {
8458  printk(KERN_ERR "CACHE INCORRECTLY CONFIGURED.\n");
8459  goto attach_error;
8460  }
8461 
8462  /* Install the interrupt handler. */
8463  np->irq = device->slot.irq;
8464 
8465  /* Initialize the fixed part of the default ccb. */
8466  ncr_init_ccb(np, np->ccb);
8467 
8468  /*
8469  * After SCSI devices have been opened, we cannot reset the bus
8470  * safely, so we do it here. Interrupt handler does the real work.
8471  * Process the reset exception if interrupts are not enabled yet.
8472  * Then enable disconnects.
8473  */
8474  spin_lock_irqsave(&np->smp_lock, flags);
8475  if (ncr_reset_scsi_bus(np, 0, driver_setup.settle_delay) != 0) {
8476  printk(KERN_ERR "%s: FATAL ERROR: CHECK SCSI BUS - CABLES, TERMINATION, DEVICE POWER etc.!\n", ncr_name(np));
8477 
8478  spin_unlock_irqrestore(&np->smp_lock, flags);
8479  goto attach_error;
8480  }
8481  ncr_exception(np);
8482 
8483  np->disc = 1;
8484 
8485  /*
8486  * The middle-level SCSI driver does not wait for devices to settle.
8487  * Wait synchronously if more than 2 seconds.
8488  */
8489  if (driver_setup.settle_delay > 2) {
8490  printk(KERN_INFO "%s: waiting %d seconds for scsi devices to settle...\n",
8491  ncr_name(np), driver_setup.settle_delay);
8492  mdelay(1000 * driver_setup.settle_delay);
8493  }
8494 
8495  /* start the timeout daemon */
8496  np->lasttime=0;
8497  ncr_timeout (np);
8498 
8499  /* use SIMPLE TAG messages by default */
8500 #ifdef SCSI_NCR_ALWAYS_SIMPLE_TAG
8501  np->order = SIMPLE_QUEUE_TAG;
8502 #endif
8503 
8504  spin_unlock_irqrestore(&np->smp_lock, flags);
8505 
8506  return instance;
8507 
8508  attach_error:
8509  if (!instance)
8510  return NULL;
8511  printk(KERN_INFO "%s: detaching...\n", ncr_name(np));
8512  if (!np)
8513  goto unregister;
8514  if (np->scripth0)
8515  m_free_dma(np->scripth0, sizeof(struct scripth), "SCRIPTH");
8516  if (np->script0)
8517  m_free_dma(np->script0, sizeof(struct script), "SCRIPT");
8518  if (np->ccb)
8519  m_free_dma(np->ccb, sizeof(struct ccb), "CCB");
8520  m_free_dma(np, sizeof(struct ncb), "NCB");
8521  host_data->ncb = NULL;
8522 
8523  unregister:
8524  scsi_host_put(instance);
8525 
8526  return NULL;
8527 }
8528 
8529 
8530 void ncr53c8xx_release(struct Scsi_Host *host)
8531 {
8532  struct host_data *host_data = shost_priv(host);
8533 #ifdef DEBUG_NCR53C8XX
8534  printk("ncr53c8xx: release\n");
8535 #endif
8536  if (host_data->ncb)
8537  ncr_detach(host_data->ncb);
8538  scsi_host_put(host);
8539 }
8540 
8541 static void ncr53c8xx_set_period(struct scsi_target *starget, int period)
8542 {
8543  struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
8544  struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
8545  struct tcb *tp = &np->target[starget->id];
8546 
8547  if (period > np->maxsync)
8548  period = np->maxsync;
8549  else if (period < np->minsync)
8550  period = np->minsync;
8551 
8552  tp->usrsync = period;
8553 
8554  ncr_negotiate(np, tp);
8555 }
8556 
8557 static void ncr53c8xx_set_offset(struct scsi_target *starget, int offset)
8558 {
8559  struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
8560  struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
8561  struct tcb *tp = &np->target[starget->id];
8562 
8563  if (offset > np->maxoffs)
8564  offset = np->maxoffs;
8565  else if (offset < 0)
8566  offset = 0;
8567 
8568  tp->maxoffs = offset;
8569 
8570  ncr_negotiate(np, tp);
8571 }
8572 
8573 static void ncr53c8xx_set_width(struct scsi_target *starget, int width)
8574 {
8575  struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
8576  struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
8577  struct tcb *tp = &np->target[starget->id];
8578 
8579  if (width > np->maxwide)
8580  width = np->maxwide;
8581  else if (width < 0)
8582  width = 0;
8583 
8584  tp->usrwide = width;
8585 
8586  ncr_negotiate(np, tp);
8587 }
8588 
8589 static void ncr53c8xx_get_signalling(struct Scsi_Host *shost)
8590 {
8591  struct ncb *np = ((struct host_data *)shost->hostdata)->ncb;
8592  enum spi_signal_type type;
8593 
8594  switch (np->scsi_mode) {
8595  case SMODE_SE:
8596  type = SPI_SIGNAL_SE;
8597  break;
8598  case SMODE_HVD:
8599  type = SPI_SIGNAL_HVD;
8600  break;
8601  default:
8602  type = SPI_SIGNAL_UNKNOWN;
8603  break;
8604  }
8605  spi_signalling(shost) = type;
8606 }
8607 
8608 static struct spi_function_template ncr53c8xx_transport_functions = {
8609  .set_period = ncr53c8xx_set_period,
8610  .show_period = 1,
8611  .set_offset = ncr53c8xx_set_offset,
8612  .show_offset = 1,
8613  .set_width = ncr53c8xx_set_width,
8614  .show_width = 1,
8615  .get_signalling = ncr53c8xx_get_signalling,
8616 };
8617 
8619 {
8620  ncr53c8xx_transport_template = spi_attach_transport(&ncr53c8xx_transport_functions);
8621  if (!ncr53c8xx_transport_template)
8622  return -ENODEV;
8623  return 0;
8624 }
8625 
8626 void ncr53c8xx_exit(void)
8627 {
8628  spi_release_transport(ncr53c8xx_transport_template);
8629 }