Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
sge.c
Go to the documentation of this file.
1 /*****************************************************************************
2  * *
3  * File: sge.c *
4  * $Revision: 1.26 $ *
5  * $Date: 2005/06/21 18:29:48 $ *
6  * Description: *
7  * DMA engine. *
8  * part of the Chelsio 10Gb Ethernet Driver. *
9  * *
10  * This program is free software; you can redistribute it and/or modify *
11  * it under the terms of the GNU General Public License, version 2, as *
12  * published by the Free Software Foundation. *
13  * *
14  * You should have received a copy of the GNU General Public License along *
15  * with this program; if not, write to the Free Software Foundation, Inc., *
16  * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
17  * *
18  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED *
19  * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF *
20  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. *
21  * *
22  * http://www.chelsio.com *
23  * *
24  * Copyright (c) 2003 - 2005 Chelsio Communications, Inc. *
25  * All rights reserved. *
26  * *
27  * Maintainers: [email protected] *
28  * *
29  * Authors: Dimitrios Michailidis <[email protected]> *
30  * Tina Yang <[email protected]> *
31  * Felix Marti <[email protected]> *
32  * Scott Bardone <[email protected]> *
33  * Kurt Ottaway <[email protected]> *
34  * Frank DiMambro <[email protected]> *
35  * *
36  * History: *
37  * *
38  ****************************************************************************/
39 
40 #include "common.h"
41 
42 #include <linux/types.h>
43 #include <linux/errno.h>
44 #include <linux/pci.h>
45 #include <linux/ktime.h>
46 #include <linux/netdevice.h>
47 #include <linux/etherdevice.h>
48 #include <linux/if_vlan.h>
49 #include <linux/skbuff.h>
50 #include <linux/init.h>
51 #include <linux/mm.h>
52 #include <linux/tcp.h>
53 #include <linux/ip.h>
54 #include <linux/in.h>
55 #include <linux/if_arp.h>
56 #include <linux/slab.h>
57 #include <linux/prefetch.h>
58 
59 #include "cpl5_cmd.h"
60 #include "sge.h"
61 #include "regs.h"
62 #include "espi.h"
63 
64 /* This belongs in if_ether.h */
65 #define ETH_P_CPL5 0xf
66 
67 #define SGE_CMDQ_N 2
68 #define SGE_FREELQ_N 2
69 #define SGE_CMDQ0_E_N 1024
70 #define SGE_CMDQ1_E_N 128
71 #define SGE_FREEL_SIZE 4096
72 #define SGE_JUMBO_FREEL_SIZE 512
73 #define SGE_FREEL_REFILL_THRESH 16
74 #define SGE_RESPQ_E_N 1024
75 #define SGE_INTRTIMER_NRES 1000
76 #define SGE_RX_SM_BUF_SIZE 1536
77 #define SGE_TX_DESC_MAX_PLEN 16384
78 
79 #define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4)
80 
81 /*
82  * Period of the TX buffer reclaim timer. This timer does not need to run
83  * frequently as TX buffers are usually reclaimed by new TX packets.
84  */
85 #define TX_RECLAIM_PERIOD (HZ / 4)
86 
87 #define M_CMD_LEN 0x7fffffff
88 #define V_CMD_LEN(v) (v)
89 #define G_CMD_LEN(v) ((v) & M_CMD_LEN)
90 #define V_CMD_GEN1(v) ((v) << 31)
91 #define V_CMD_GEN2(v) (v)
92 #define F_CMD_DATAVALID (1 << 1)
93 #define F_CMD_SOP (1 << 2)
94 #define V_CMD_EOP(v) ((v) << 3)
95 
96 /*
97  * Command queue, receive buffer list, and response queue descriptors.
98  */
99 #if defined(__BIG_ENDIAN_BITFIELD)
100 struct cmdQ_e {
101  u32 addr_lo;
102  u32 len_gen;
103  u32 flags;
104  u32 addr_hi;
105 };
106 
107 struct freelQ_e {
108  u32 addr_lo;
109  u32 len_gen;
110  u32 gen2;
111  u32 addr_hi;
112 };
113 
114 struct respQ_e {
115  u32 Qsleeping : 4;
116  u32 Cmdq1CreditReturn : 5;
117  u32 Cmdq1DmaComplete : 5;
118  u32 Cmdq0CreditReturn : 5;
119  u32 Cmdq0DmaComplete : 5;
120  u32 FreelistQid : 2;
121  u32 CreditValid : 1;
122  u32 DataValid : 1;
123  u32 Offload : 1;
124  u32 Eop : 1;
125  u32 Sop : 1;
126  u32 GenerationBit : 1;
127  u32 BufferLength;
128 };
129 #elif defined(__LITTLE_ENDIAN_BITFIELD)
130 struct cmdQ_e {
131  u32 len_gen;
132  u32 addr_lo;
133  u32 addr_hi;
134  u32 flags;
135 };
136 
137 struct freelQ_e {
138  u32 len_gen;
139  u32 addr_lo;
140  u32 addr_hi;
141  u32 gen2;
142 };
143 
144 struct respQ_e {
145  u32 BufferLength;
146  u32 GenerationBit : 1;
147  u32 Sop : 1;
148  u32 Eop : 1;
149  u32 Offload : 1;
150  u32 DataValid : 1;
151  u32 CreditValid : 1;
152  u32 FreelistQid : 2;
153  u32 Cmdq0DmaComplete : 5;
154  u32 Cmdq0CreditReturn : 5;
155  u32 Cmdq1DmaComplete : 5;
156  u32 Cmdq1CreditReturn : 5;
157  u32 Qsleeping : 4;
158 } ;
159 #endif
160 
161 /*
162  * SW Context Command and Freelist Queue Descriptors
163  */
164 struct cmdQ_ce {
165  struct sk_buff *skb;
167  DEFINE_DMA_UNMAP_LEN(dma_len);
168 };
169 
170 struct freelQ_ce {
171  struct sk_buff *skb;
173  DEFINE_DMA_UNMAP_LEN(dma_len);
174 };
175 
176 /*
177  * SW command, freelist and response rings
178  */
179 struct cmdQ {
180  unsigned long status; /* HW DMA fetch status */
181  unsigned int in_use; /* # of in-use command descriptors */
182  unsigned int size; /* # of descriptors */
183  unsigned int processed; /* total # of descs HW has processed */
184  unsigned int cleaned; /* total # of descs SW has reclaimed */
185  unsigned int stop_thres; /* SW TX queue suspend threshold */
186  u16 pidx; /* producer index (SW) */
187  u16 cidx; /* consumer index (HW) */
188  u8 genbit; /* current generation (=valid) bit */
189  u8 sop; /* is next entry start of packet? */
190  struct cmdQ_e *entries; /* HW command descriptor Q */
191  struct cmdQ_ce *centries; /* SW command context descriptor Q */
192  dma_addr_t dma_addr; /* DMA addr HW command descriptor Q */
193  spinlock_t lock; /* Lock to protect cmdQ enqueuing */
194 };
195 
196 struct freelQ {
197  unsigned int credits; /* # of available RX buffers */
198  unsigned int size; /* free list capacity */
199  u16 pidx; /* producer index (SW) */
200  u16 cidx; /* consumer index (HW) */
201  u16 rx_buffer_size; /* Buffer size on this free list */
202  u16 dma_offset; /* DMA offset to align IP headers */
203  u16 recycleq_idx; /* skb recycle q to use */
204  u8 genbit; /* current generation (=valid) bit */
205  struct freelQ_e *entries; /* HW freelist descriptor Q */
206  struct freelQ_ce *centries; /* SW freelist context descriptor Q */
207  dma_addr_t dma_addr; /* DMA addr HW freelist descriptor Q */
208 };
209 
210 struct respQ {
211  unsigned int credits; /* credits to be returned to SGE */
212  unsigned int size; /* # of response Q descriptors */
213  u16 cidx; /* consumer index (SW) */
214  u8 genbit; /* current generation(=valid) bit */
215  struct respQ_e *entries; /* HW response descriptor Q */
216  dma_addr_t dma_addr; /* DMA addr HW response descriptor Q */
217 };
218 
219 /* Bit flags for cmdQ.status */
220 enum {
221  CMDQ_STAT_RUNNING = 1, /* fetch engine is running */
222  CMDQ_STAT_LAST_PKT_DB = 2 /* last packet rung the doorbell */
223 };
224 
225 /* T204 TX SW scheduler */
226 
227 /* Per T204 TX port */
228 struct sched_port {
229  unsigned int avail; /* available bits - quota */
230  unsigned int drain_bits_per_1024ns; /* drain rate */
231  unsigned int speed; /* drain rate, mbps */
232  unsigned int mtu; /* mtu size */
233  struct sk_buff_head skbq; /* pending skbs */
234 };
235 
236 /* Per T204 device */
237 struct sched {
238  ktime_t last_updated; /* last time quotas were computed */
239  unsigned int max_avail; /* max bits to be sent to any port */
240  unsigned int port; /* port index (round robin ports) */
241  unsigned int num; /* num skbs in per port queues */
243  struct tasklet_struct sched_tsk;/* tasklet used to run scheduler */
244 };
245 static void restart_sched(unsigned long);
246 
247 
248 /*
249  * Main SGE data structure
250  *
251  * Interrupts are handled by a single CPU and it is likely that on a MP system
252  * the application is migrated to another CPU. In that scenario, we try to
253  * separate the RX(in irq context) and TX state in order to decrease memory
254  * contention.
255  */
256 struct sge {
257  struct adapter *adapter; /* adapter backpointer */
258  struct net_device *netdev; /* netdevice backpointer */
259  struct freelQ freelQ[SGE_FREELQ_N]; /* buffer free lists */
260  struct respQ respQ; /* response Q */
261  unsigned long stopped_tx_queues; /* bitmap of suspended Tx queues */
262  unsigned int rx_pkt_pad; /* RX padding for L2 packets */
263  unsigned int jumbo_fl; /* jumbo freelist Q index */
264  unsigned int intrtimer_nres; /* no-resource interrupt timer */
265  unsigned int fixed_intrtimer;/* non-adaptive interrupt timer */
266  struct timer_list tx_reclaim_timer; /* reclaims TX buffers */
268  unsigned long espibug_timeout;
270  u32 sge_control; /* shadow value of sge control reg */
273  struct sched *tx_sched;
275 };
276 
277 static const u8 ch_mac_addr[ETH_ALEN] = {
278  0x0, 0x7, 0x43, 0x0, 0x0, 0x0
279 };
280 
281 /*
282  * stop tasklet and free all pending skb's
283  */
284 static void tx_sched_stop(struct sge *sge)
285 {
286  struct sched *s = sge->tx_sched;
287  int i;
288 
289  tasklet_kill(&s->sched_tsk);
290 
291  for (i = 0; i < MAX_NPORTS; i++)
292  __skb_queue_purge(&s->p[s->port].skbq);
293 }
294 
295 /*
296  * t1_sched_update_parms() is called when the MTU or link speed changes. It
297  * re-computes scheduler parameters to scope with the change.
298  */
299 unsigned int t1_sched_update_parms(struct sge *sge, unsigned int port,
300  unsigned int mtu, unsigned int speed)
301 {
302  struct sched *s = sge->tx_sched;
303  struct sched_port *p = &s->p[port];
304  unsigned int max_avail_segs;
305 
306  pr_debug("t1_sched_update_params mtu=%d speed=%d\n", mtu, speed);
307  if (speed)
308  p->speed = speed;
309  if (mtu)
310  p->mtu = mtu;
311 
312  if (speed || mtu) {
313  unsigned long long drain = 1024ULL * p->speed * (p->mtu - 40);
314  do_div(drain, (p->mtu + 50) * 1000);
315  p->drain_bits_per_1024ns = (unsigned int) drain;
316 
317  if (p->speed < 1000)
319  90 * p->drain_bits_per_1024ns / 100;
320  }
321 
322  if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204) {
323  p->drain_bits_per_1024ns -= 16;
324  s->max_avail = max(4096U, p->mtu + 16 + 14 + 4);
325  max_avail_segs = max(1U, 4096 / (p->mtu - 40));
326  } else {
327  s->max_avail = 16384;
328  max_avail_segs = max(1U, 9000 / (p->mtu - 40));
329  }
330 
331  pr_debug("t1_sched_update_parms: mtu %u speed %u max_avail %u "
332  "max_avail_segs %u drain_bits_per_1024ns %u\n", p->mtu,
333  p->speed, s->max_avail, max_avail_segs,
335 
336  return max_avail_segs * (p->mtu - 40);
337 }
338 
339 #if 0
340 
341 /*
342  * t1_sched_max_avail_bytes() tells the scheduler the maximum amount of
343  * data that can be pushed per port.
344  */
345 void t1_sched_set_max_avail_bytes(struct sge *sge, unsigned int val)
346 {
347  struct sched *s = sge->tx_sched;
348  unsigned int i;
349 
350  s->max_avail = val;
351  for (i = 0; i < MAX_NPORTS; i++)
352  t1_sched_update_parms(sge, i, 0, 0);
353 }
354 
355 /*
356  * t1_sched_set_drain_bits_per_us() tells the scheduler at which rate a port
357  * is draining.
358  */
359 void t1_sched_set_drain_bits_per_us(struct sge *sge, unsigned int port,
360  unsigned int val)
361 {
362  struct sched *s = sge->tx_sched;
363  struct sched_port *p = &s->p[port];
364  p->drain_bits_per_1024ns = val * 1024 / 1000;
365  t1_sched_update_parms(sge, port, 0, 0);
366 }
367 
368 #endif /* 0 */
369 
370 
371 /*
372  * get_clock() implements a ns clock (see ktime_get)
373  */
374 static inline ktime_t get_clock(void)
375 {
376  struct timespec ts;
377 
378  ktime_get_ts(&ts);
379  return timespec_to_ktime(ts);
380 }
381 
382 /*
383  * tx_sched_init() allocates resources and does basic initialization.
384  */
385 static int tx_sched_init(struct sge *sge)
386 {
387  struct sched *s;
388  int i;
389 
390  s = kzalloc(sizeof (struct sched), GFP_KERNEL);
391  if (!s)
392  return -ENOMEM;
393 
394  pr_debug("tx_sched_init\n");
395  tasklet_init(&s->sched_tsk, restart_sched, (unsigned long) sge);
396  sge->tx_sched = s;
397 
398  for (i = 0; i < MAX_NPORTS; i++) {
399  skb_queue_head_init(&s->p[i].skbq);
400  t1_sched_update_parms(sge, i, 1500, 1000);
401  }
402 
403  return 0;
404 }
405 
406 /*
407  * sched_update_avail() computes the delta since the last time it was called
408  * and updates the per port quota (number of bits that can be sent to the any
409  * port).
410  */
411 static inline int sched_update_avail(struct sge *sge)
412 {
413  struct sched *s = sge->tx_sched;
414  ktime_t now = get_clock();
415  unsigned int i;
416  long long delta_time_ns;
417 
418  delta_time_ns = ktime_to_ns(ktime_sub(now, s->last_updated));
419 
420  pr_debug("sched_update_avail delta=%lld\n", delta_time_ns);
421  if (delta_time_ns < 15000)
422  return 0;
423 
424  for (i = 0; i < MAX_NPORTS; i++) {
425  struct sched_port *p = &s->p[i];
426  unsigned int delta_avail;
427 
428  delta_avail = (p->drain_bits_per_1024ns * delta_time_ns) >> 13;
429  p->avail = min(p->avail + delta_avail, s->max_avail);
430  }
431 
432  s->last_updated = now;
433 
434  return 1;
435 }
436 
437 /*
438  * sched_skb() is called from two different places. In the tx path, any
439  * packet generating load on an output port will call sched_skb()
440  * (skb != NULL). In addition, sched_skb() is called from the irq/soft irq
441  * context (skb == NULL).
442  * The scheduler only returns a skb (which will then be sent) if the
443  * length of the skb is <= the current quota of the output port.
444  */
445 static struct sk_buff *sched_skb(struct sge *sge, struct sk_buff *skb,
446  unsigned int credits)
447 {
448  struct sched *s = sge->tx_sched;
449  struct sk_buff_head *skbq;
450  unsigned int i, len, update = 1;
451 
452  pr_debug("sched_skb %p\n", skb);
453  if (!skb) {
454  if (!s->num)
455  return NULL;
456  } else {
457  skbq = &s->p[skb->dev->if_port].skbq;
458  __skb_queue_tail(skbq, skb);
459  s->num++;
460  skb = NULL;
461  }
462 
463  if (credits < MAX_SKB_FRAGS + 1)
464  goto out;
465 
466 again:
467  for (i = 0; i < MAX_NPORTS; i++) {
468  s->port = (s->port + 1) & (MAX_NPORTS - 1);
469  skbq = &s->p[s->port].skbq;
470 
471  skb = skb_peek(skbq);
472 
473  if (!skb)
474  continue;
475 
476  len = skb->len;
477  if (len <= s->p[s->port].avail) {
478  s->p[s->port].avail -= len;
479  s->num--;
480  __skb_unlink(skb, skbq);
481  goto out;
482  }
483  skb = NULL;
484  }
485 
486  if (update-- && sched_update_avail(sge))
487  goto again;
488 
489 out:
490  /* If there are more pending skbs, we use the hardware to schedule us
491  * again.
492  */
493  if (s->num && !skb) {
494  struct cmdQ *q = &sge->cmdQ[0];
496  if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
499  }
500  }
501  pr_debug("sched_skb ret %p\n", skb);
502 
503  return skb;
504 }
505 
506 /*
507  * PIO to indicate that memory mapped Q contains valid descriptor(s).
508  */
509 static inline void doorbell_pio(struct adapter *adapter, u32 val)
510 {
511  wmb();
512  writel(val, adapter->regs + A_SG_DOORBELL);
513 }
514 
515 /*
516  * Frees all RX buffers on the freelist Q. The caller must make sure that
517  * the SGE is turned off before calling this function.
518  */
519 static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *q)
520 {
521  unsigned int cidx = q->cidx;
522 
523  while (q->credits--) {
524  struct freelQ_ce *ce = &q->centries[cidx];
525 
526  pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr),
527  dma_unmap_len(ce, dma_len),
529  dev_kfree_skb(ce->skb);
530  ce->skb = NULL;
531  if (++cidx == q->size)
532  cidx = 0;
533  }
534 }
535 
536 /*
537  * Free RX free list and response queue resources.
538  */
539 static void free_rx_resources(struct sge *sge)
540 {
541  struct pci_dev *pdev = sge->adapter->pdev;
542  unsigned int size, i;
543 
544  if (sge->respQ.entries) {
545  size = sizeof(struct respQ_e) * sge->respQ.size;
546  pci_free_consistent(pdev, size, sge->respQ.entries,
547  sge->respQ.dma_addr);
548  }
549 
550  for (i = 0; i < SGE_FREELQ_N; i++) {
551  struct freelQ *q = &sge->freelQ[i];
552 
553  if (q->centries) {
554  free_freelQ_buffers(pdev, q);
555  kfree(q->centries);
556  }
557  if (q->entries) {
558  size = sizeof(struct freelQ_e) * q->size;
559  pci_free_consistent(pdev, size, q->entries,
560  q->dma_addr);
561  }
562  }
563 }
564 
565 /*
566  * Allocates basic RX resources, consisting of memory mapped freelist Qs and a
567  * response queue.
568  */
569 static int alloc_rx_resources(struct sge *sge, struct sge_params *p)
570 {
571  struct pci_dev *pdev = sge->adapter->pdev;
572  unsigned int size, i;
573 
574  for (i = 0; i < SGE_FREELQ_N; i++) {
575  struct freelQ *q = &sge->freelQ[i];
576 
577  q->genbit = 1;
578  q->size = p->freelQ_size[i];
579  q->dma_offset = sge->rx_pkt_pad ? 0 : NET_IP_ALIGN;
580  size = sizeof(struct freelQ_e) * q->size;
581  q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
582  if (!q->entries)
583  goto err_no_mem;
584 
585  size = sizeof(struct freelQ_ce) * q->size;
586  q->centries = kzalloc(size, GFP_KERNEL);
587  if (!q->centries)
588  goto err_no_mem;
589  }
590 
591  /*
592  * Calculate the buffer sizes for the two free lists. FL0 accommodates
593  * regular sized Ethernet frames, FL1 is sized not to exceed 16K,
594  * including all the sk_buff overhead.
595  *
596  * Note: For T2 FL0 and FL1 are reversed.
597  */
598  sge->freelQ[!sge->jumbo_fl].rx_buffer_size = SGE_RX_SM_BUF_SIZE +
599  sizeof(struct cpl_rx_data) +
600  sge->freelQ[!sge->jumbo_fl].dma_offset;
601 
602  size = (16 * 1024) -
603  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
604 
605  sge->freelQ[sge->jumbo_fl].rx_buffer_size = size;
606 
607  /*
608  * Setup which skb recycle Q should be used when recycling buffers from
609  * each free list.
610  */
611  sge->freelQ[!sge->jumbo_fl].recycleq_idx = 0;
612  sge->freelQ[sge->jumbo_fl].recycleq_idx = 1;
613 
614  sge->respQ.genbit = 1;
615  sge->respQ.size = SGE_RESPQ_E_N;
616  sge->respQ.credits = 0;
617  size = sizeof(struct respQ_e) * sge->respQ.size;
618  sge->respQ.entries =
619  pci_alloc_consistent(pdev, size, &sge->respQ.dma_addr);
620  if (!sge->respQ.entries)
621  goto err_no_mem;
622  return 0;
623 
624 err_no_mem:
625  free_rx_resources(sge);
626  return -ENOMEM;
627 }
628 
629 /*
630  * Reclaims n TX descriptors and frees the buffers associated with them.
631  */
632 static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *q, unsigned int n)
633 {
634  struct cmdQ_ce *ce;
635  struct pci_dev *pdev = sge->adapter->pdev;
636  unsigned int cidx = q->cidx;
637 
638  q->in_use -= n;
639  ce = &q->centries[cidx];
640  while (n--) {
641  if (likely(dma_unmap_len(ce, dma_len))) {
642  pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr),
643  dma_unmap_len(ce, dma_len),
645  if (q->sop)
646  q->sop = 0;
647  }
648  if (ce->skb) {
649  dev_kfree_skb_any(ce->skb);
650  q->sop = 1;
651  }
652  ce++;
653  if (++cidx == q->size) {
654  cidx = 0;
655  ce = q->centries;
656  }
657  }
658  q->cidx = cidx;
659 }
660 
661 /*
662  * Free TX resources.
663  *
664  * Assumes that SGE is stopped and all interrupts are disabled.
665  */
666 static void free_tx_resources(struct sge *sge)
667 {
668  struct pci_dev *pdev = sge->adapter->pdev;
669  unsigned int size, i;
670 
671  for (i = 0; i < SGE_CMDQ_N; i++) {
672  struct cmdQ *q = &sge->cmdQ[i];
673 
674  if (q->centries) {
675  if (q->in_use)
676  free_cmdQ_buffers(sge, q, q->in_use);
677  kfree(q->centries);
678  }
679  if (q->entries) {
680  size = sizeof(struct cmdQ_e) * q->size;
681  pci_free_consistent(pdev, size, q->entries,
682  q->dma_addr);
683  }
684  }
685 }
686 
687 /*
688  * Allocates basic TX resources, consisting of memory mapped command Qs.
689  */
690 static int alloc_tx_resources(struct sge *sge, struct sge_params *p)
691 {
692  struct pci_dev *pdev = sge->adapter->pdev;
693  unsigned int size, i;
694 
695  for (i = 0; i < SGE_CMDQ_N; i++) {
696  struct cmdQ *q = &sge->cmdQ[i];
697 
698  q->genbit = 1;
699  q->sop = 1;
700  q->size = p->cmdQ_size[i];
701  q->in_use = 0;
702  q->status = 0;
703  q->processed = q->cleaned = 0;
704  q->stop_thres = 0;
705  spin_lock_init(&q->lock);
706  size = sizeof(struct cmdQ_e) * q->size;
707  q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
708  if (!q->entries)
709  goto err_no_mem;
710 
711  size = sizeof(struct cmdQ_ce) * q->size;
712  q->centries = kzalloc(size, GFP_KERNEL);
713  if (!q->centries)
714  goto err_no_mem;
715  }
716 
717  /*
718  * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE
719  * only. For queue 0 set the stop threshold so we can handle one more
720  * packet from each port, plus reserve an additional 24 entries for
721  * Ethernet packets only. Queue 1 never suspends nor do we reserve
722  * space for Ethernet packets.
723  */
724  sge->cmdQ[0].stop_thres = sge->adapter->params.nports *
725  (MAX_SKB_FRAGS + 1);
726  return 0;
727 
728 err_no_mem:
729  free_tx_resources(sge);
730  return -ENOMEM;
731 }
732 
733 static inline void setup_ring_params(struct adapter *adapter, u64 addr,
734  u32 size, int base_reg_lo,
735  int base_reg_hi, int size_reg)
736 {
737  writel((u32)addr, adapter->regs + base_reg_lo);
738  writel(addr >> 32, adapter->regs + base_reg_hi);
739  writel(size, adapter->regs + size_reg);
740 }
741 
742 /*
743  * Enable/disable VLAN acceleration.
744  */
745 void t1_vlan_mode(struct adapter *adapter, netdev_features_t features)
746 {
747  struct sge *sge = adapter->sge;
748 
749  if (features & NETIF_F_HW_VLAN_RX)
750  sge->sge_control |= F_VLAN_XTRACT;
751  else
752  sge->sge_control &= ~F_VLAN_XTRACT;
753  if (adapter->open_device_map) {
754  writel(sge->sge_control, adapter->regs + A_SG_CONTROL);
755  readl(adapter->regs + A_SG_CONTROL); /* flush */
756  }
757 }
758 
759 /*
760  * Programs the various SGE registers. However, the engine is not yet enabled,
761  * but sge->sge_control is setup and ready to go.
762  */
763 static void configure_sge(struct sge *sge, struct sge_params *p)
764 {
765  struct adapter *ap = sge->adapter;
766 
767  writel(0, ap->regs + A_SG_CONTROL);
768  setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].size,
770  setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].size,
772  setup_ring_params(ap, sge->freelQ[0].dma_addr,
773  sge->freelQ[0].size, A_SG_FL0BASELWR,
775  setup_ring_params(ap, sge->freelQ[1].dma_addr,
776  sge->freelQ[1].size, A_SG_FL1BASELWR,
778 
779  /* The threshold comparison uses <. */
781 
782  setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.size,
784  writel((u32)sge->respQ.size - 1, ap->regs + A_SG_RSPQUEUECREDIT);
785 
790 
791 #if defined(__BIG_ENDIAN_BITFIELD)
793 #endif
794 
795  /* Initialize no-resource timer */
796  sge->intrtimer_nres = SGE_INTRTIMER_NRES * core_ticks_per_usec(ap);
797 
799 }
800 
801 /*
802  * Return the payload capacity of the jumbo free-list buffers.
803  */
804 static inline unsigned int jumbo_payload_capacity(const struct sge *sge)
805 {
806  return sge->freelQ[sge->jumbo_fl].rx_buffer_size -
807  sge->freelQ[sge->jumbo_fl].dma_offset -
808  sizeof(struct cpl_rx_data);
809 }
810 
811 /*
812  * Frees all SGE related resources and the sge structure itself
813  */
814 void t1_sge_destroy(struct sge *sge)
815 {
816  int i;
817 
818  for_each_port(sge->adapter, i)
819  free_percpu(sge->port_stats[i]);
820 
821  kfree(sge->tx_sched);
822  free_tx_resources(sge);
823  free_rx_resources(sge);
824  kfree(sge);
825 }
826 
827 /*
828  * Allocates new RX buffers on the freelist Q (and tracks them on the freelist
829  * context Q) until the Q is full or alloc_skb fails.
830  *
831  * It is possible that the generation bits already match, indicating that the
832  * buffer is already valid and nothing needs to be done. This happens when we
833  * copied a received buffer into a new sk_buff during the interrupt processing.
834  *
835  * If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad),
836  * we specify a RX_OFFSET in order to make sure that the IP header is 4B
837  * aligned.
838  */
839 static void refill_free_list(struct sge *sge, struct freelQ *q)
840 {
841  struct pci_dev *pdev = sge->adapter->pdev;
842  struct freelQ_ce *ce = &q->centries[q->pidx];
843  struct freelQ_e *e = &q->entries[q->pidx];
844  unsigned int dma_len = q->rx_buffer_size - q->dma_offset;
845 
846  while (q->credits < q->size) {
847  struct sk_buff *skb;
849 
850  skb = alloc_skb(q->rx_buffer_size, GFP_ATOMIC);
851  if (!skb)
852  break;
853 
854  skb_reserve(skb, q->dma_offset);
855  mapping = pci_map_single(pdev, skb->data, dma_len,
857  skb_reserve(skb, sge->rx_pkt_pad);
858 
859  ce->skb = skb;
860  dma_unmap_addr_set(ce, dma_addr, mapping);
861  dma_unmap_len_set(ce, dma_len, dma_len);
862  e->addr_lo = (u32)mapping;
863  e->addr_hi = (u64)mapping >> 32;
864  e->len_gen = V_CMD_LEN(dma_len) | V_CMD_GEN1(q->genbit);
865  wmb();
866  e->gen2 = V_CMD_GEN2(q->genbit);
867 
868  e++;
869  ce++;
870  if (++q->pidx == q->size) {
871  q->pidx = 0;
872  q->genbit ^= 1;
873  ce = q->centries;
874  e = q->entries;
875  }
876  q->credits++;
877  }
878 }
879 
880 /*
881  * Calls refill_free_list for both free lists. If we cannot fill at least 1/4
882  * of both rings, we go into 'few interrupt mode' in order to give the system
883  * time to free up resources.
884  */
885 static void freelQs_empty(struct sge *sge)
886 {
887  struct adapter *adapter = sge->adapter;
888  u32 irq_reg = readl(adapter->regs + A_SG_INT_ENABLE);
889  u32 irqholdoff_reg;
890 
891  refill_free_list(sge, &sge->freelQ[0]);
892  refill_free_list(sge, &sge->freelQ[1]);
893 
894  if (sge->freelQ[0].credits > (sge->freelQ[0].size >> 2) &&
895  sge->freelQ[1].credits > (sge->freelQ[1].size >> 2)) {
896  irq_reg |= F_FL_EXHAUSTED;
897  irqholdoff_reg = sge->fixed_intrtimer;
898  } else {
899  /* Clear the F_FL_EXHAUSTED interrupts for now */
900  irq_reg &= ~F_FL_EXHAUSTED;
901  irqholdoff_reg = sge->intrtimer_nres;
902  }
903  writel(irqholdoff_reg, adapter->regs + A_SG_INTRTIMER);
904  writel(irq_reg, adapter->regs + A_SG_INT_ENABLE);
905 
906  /* We reenable the Qs to force a freelist GTS interrupt later */
907  doorbell_pio(adapter, F_FL0_ENABLE | F_FL1_ENABLE);
908 }
909 
910 #define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
911 #define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
912 #define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \
913  F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
914 
915 /*
916  * Disable SGE Interrupts
917  */
918 void t1_sge_intr_disable(struct sge *sge)
919 {
920  u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
921 
922  writel(val & ~SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
923  writel(0, sge->adapter->regs + A_SG_INT_ENABLE);
924 }
925 
926 /*
927  * Enable SGE interrupts.
928  */
929 void t1_sge_intr_enable(struct sge *sge)
930 {
931  u32 en = SGE_INT_ENABLE;
932  u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
933 
934  if (sge->adapter->port[0].dev->hw_features & NETIF_F_TSO)
935  en &= ~F_PACKET_TOO_BIG;
936  writel(en, sge->adapter->regs + A_SG_INT_ENABLE);
937  writel(val | SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
938 }
939 
940 /*
941  * Clear SGE interrupts.
942  */
943 void t1_sge_intr_clear(struct sge *sge)
944 {
945  writel(SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_CAUSE);
946  writel(0xffffffff, sge->adapter->regs + A_SG_INT_CAUSE);
947 }
948 
949 /*
950  * SGE 'Error' interrupt handler
951  */
952 int t1_sge_intr_error_handler(struct sge *sge)
953 {
954  struct adapter *adapter = sge->adapter;
955  u32 cause = readl(adapter->regs + A_SG_INT_CAUSE);
956 
957  if (adapter->port[0].dev->hw_features & NETIF_F_TSO)
958  cause &= ~F_PACKET_TOO_BIG;
959  if (cause & F_RESPQ_EXHAUSTED)
960  sge->stats.respQ_empty++;
961  if (cause & F_RESPQ_OVERFLOW) {
962  sge->stats.respQ_overflow++;
963  pr_alert("%s: SGE response queue overflow\n",
964  adapter->name);
965  }
966  if (cause & F_FL_EXHAUSTED) {
967  sge->stats.freelistQ_empty++;
968  freelQs_empty(sge);
969  }
970  if (cause & F_PACKET_TOO_BIG) {
971  sge->stats.pkt_too_big++;
972  pr_alert("%s: SGE max packet size exceeded\n",
973  adapter->name);
974  }
975  if (cause & F_PACKET_MISMATCH) {
976  sge->stats.pkt_mismatch++;
977  pr_alert("%s: SGE packet mismatch\n", adapter->name);
978  }
979  if (cause & SGE_INT_FATAL)
980  t1_fatal_err(adapter);
981 
982  writel(cause, adapter->regs + A_SG_INT_CAUSE);
983  return 0;
984 }
985 
986 const struct sge_intr_counts *t1_sge_get_intr_counts(const struct sge *sge)
987 {
988  return &sge->stats;
989 }
990 
991 void t1_sge_get_port_stats(const struct sge *sge, int port,
992  struct sge_port_stats *ss)
993 {
994  int cpu;
995 
996  memset(ss, 0, sizeof(*ss));
997  for_each_possible_cpu(cpu) {
998  struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[port], cpu);
999 
1000  ss->rx_cso_good += st->rx_cso_good;
1001  ss->tx_cso += st->tx_cso;
1002  ss->tx_tso += st->tx_tso;
1003  ss->tx_need_hdrroom += st->tx_need_hdrroom;
1004  ss->vlan_xtract += st->vlan_xtract;
1005  ss->vlan_insert += st->vlan_insert;
1006  }
1007 }
1008 
1017 static void recycle_fl_buf(struct freelQ *fl, int idx)
1018 {
1019  struct freelQ_e *from = &fl->entries[idx];
1020  struct freelQ_e *to = &fl->entries[fl->pidx];
1021 
1022  fl->centries[fl->pidx] = fl->centries[idx];
1023  to->addr_lo = from->addr_lo;
1024  to->addr_hi = from->addr_hi;
1025  to->len_gen = G_CMD_LEN(from->len_gen) | V_CMD_GEN1(fl->genbit);
1026  wmb();
1027  to->gen2 = V_CMD_GEN2(fl->genbit);
1028  fl->credits++;
1029 
1030  if (++fl->pidx == fl->size) {
1031  fl->pidx = 0;
1032  fl->genbit ^= 1;
1033  }
1034 }
1035 
1036 static int copybreak __read_mostly = 256;
1037 module_param(copybreak, int, 0);
1038 MODULE_PARM_DESC(copybreak, "Receive copy threshold");
1039 
1054 static inline struct sk_buff *get_packet(struct pci_dev *pdev,
1055  struct freelQ *fl, unsigned int len)
1056 {
1057  struct sk_buff *skb;
1058  const struct freelQ_ce *ce = &fl->centries[fl->cidx];
1059 
1060  if (len < copybreak) {
1061  skb = alloc_skb(len + 2, GFP_ATOMIC);
1062  if (!skb)
1063  goto use_orig_buf;
1064 
1065  skb_reserve(skb, 2); /* align IP header */
1066  skb_put(skb, len);
1067  pci_dma_sync_single_for_cpu(pdev,
1068  dma_unmap_addr(ce, dma_addr),
1069  dma_unmap_len(ce, dma_len),
1071  skb_copy_from_linear_data(ce->skb, skb->data, len);
1072  pci_dma_sync_single_for_device(pdev,
1073  dma_unmap_addr(ce, dma_addr),
1074  dma_unmap_len(ce, dma_len),
1076  recycle_fl_buf(fl, fl->cidx);
1077  return skb;
1078  }
1079 
1080 use_orig_buf:
1081  if (fl->credits < 2) {
1082  recycle_fl_buf(fl, fl->cidx);
1083  return NULL;
1084  }
1085 
1086  pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr),
1087  dma_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
1088  skb = ce->skb;
1089  prefetch(skb->data);
1090 
1091  skb_put(skb, len);
1092  return skb;
1093 }
1094 
1104 static void unexpected_offload(struct adapter *adapter, struct freelQ *fl)
1105 {
1106  struct freelQ_ce *ce = &fl->centries[fl->cidx];
1107  struct sk_buff *skb = ce->skb;
1108 
1109  pci_dma_sync_single_for_cpu(adapter->pdev, dma_unmap_addr(ce, dma_addr),
1110  dma_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
1111  pr_err("%s: unexpected offload packet, cmd %u\n",
1112  adapter->name, *skb->data);
1113  recycle_fl_buf(fl, fl->cidx);
1114 }
1115 
1116 /*
1117  * T1/T2 SGE limits the maximum DMA size per TX descriptor to
1118  * SGE_TX_DESC_MAX_PLEN (16KB). If the PAGE_SIZE is larger than 16KB, the
1119  * stack might send more than SGE_TX_DESC_MAX_PLEN in a contiguous manner.
1120  * Note that the *_large_page_tx_descs stuff will be optimized out when
1121  * PAGE_SIZE <= SGE_TX_DESC_MAX_PLEN.
1122  *
1123  * compute_large_page_descs() computes how many additional descriptors are
1124  * required to break down the stack's request.
1125  */
1126 static inline unsigned int compute_large_page_tx_descs(struct sk_buff *skb)
1127 {
1128  unsigned int count = 0;
1129 
1131  unsigned int nfrags = skb_shinfo(skb)->nr_frags;
1132  unsigned int i, len = skb_headlen(skb);
1133  while (len > SGE_TX_DESC_MAX_PLEN) {
1134  count++;
1135  len -= SGE_TX_DESC_MAX_PLEN;
1136  }
1137  for (i = 0; nfrags--; i++) {
1138  const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1139  len = skb_frag_size(frag);
1140  while (len > SGE_TX_DESC_MAX_PLEN) {
1141  count++;
1142  len -= SGE_TX_DESC_MAX_PLEN;
1143  }
1144  }
1145  }
1146  return count;
1147 }
1148 
1149 /*
1150  * Write a cmdQ entry.
1151  *
1152  * Since this function writes the 'flags' field, it must not be used to
1153  * write the first cmdQ entry.
1154  */
1155 static inline void write_tx_desc(struct cmdQ_e *e, dma_addr_t mapping,
1156  unsigned int len, unsigned int gen,
1157  unsigned int eop)
1158 {
1160 
1161  e->addr_lo = (u32)mapping;
1162  e->addr_hi = (u64)mapping >> 32;
1163  e->len_gen = V_CMD_LEN(len) | V_CMD_GEN1(gen);
1164  e->flags = F_CMD_DATAVALID | V_CMD_EOP(eop) | V_CMD_GEN2(gen);
1165 }
1166 
1167 /*
1168  * See comment for previous function.
1169  *
1170  * write_tx_descs_large_page() writes additional SGE tx descriptors if
1171  * *desc_len exceeds HW's capability.
1172  */
1173 static inline unsigned int write_large_page_tx_descs(unsigned int pidx,
1174  struct cmdQ_e **e,
1175  struct cmdQ_ce **ce,
1176  unsigned int *gen,
1177  dma_addr_t *desc_mapping,
1178  unsigned int *desc_len,
1179  unsigned int nfrags,
1180  struct cmdQ *q)
1181 {
1183  struct cmdQ_e *e1 = *e;
1184  struct cmdQ_ce *ce1 = *ce;
1185 
1186  while (*desc_len > SGE_TX_DESC_MAX_PLEN) {
1187  *desc_len -= SGE_TX_DESC_MAX_PLEN;
1188  write_tx_desc(e1, *desc_mapping, SGE_TX_DESC_MAX_PLEN,
1189  *gen, nfrags == 0 && *desc_len == 0);
1190  ce1->skb = NULL;
1191  dma_unmap_len_set(ce1, dma_len, 0);
1192  *desc_mapping += SGE_TX_DESC_MAX_PLEN;
1193  if (*desc_len) {
1194  ce1++;
1195  e1++;
1196  if (++pidx == q->size) {
1197  pidx = 0;
1198  *gen ^= 1;
1199  ce1 = q->centries;
1200  e1 = q->entries;
1201  }
1202  }
1203  }
1204  *e = e1;
1205  *ce = ce1;
1206  }
1207  return pidx;
1208 }
1209 
1210 /*
1211  * Write the command descriptors to transmit the given skb starting at
1212  * descriptor pidx with the given generation.
1213  */
1214 static inline void write_tx_descs(struct adapter *adapter, struct sk_buff *skb,
1215  unsigned int pidx, unsigned int gen,
1216  struct cmdQ *q)
1217 {
1218  dma_addr_t mapping, desc_mapping;
1219  struct cmdQ_e *e, *e1;
1220  struct cmdQ_ce *ce;
1221  unsigned int i, flags, first_desc_len, desc_len,
1222  nfrags = skb_shinfo(skb)->nr_frags;
1223 
1224  e = e1 = &q->entries[pidx];
1225  ce = &q->centries[pidx];
1226 
1227  mapping = pci_map_single(adapter->pdev, skb->data,
1228  skb_headlen(skb), PCI_DMA_TODEVICE);
1229 
1230  desc_mapping = mapping;
1231  desc_len = skb_headlen(skb);
1232 
1233  flags = F_CMD_DATAVALID | F_CMD_SOP |
1234  V_CMD_EOP(nfrags == 0 && desc_len <= SGE_TX_DESC_MAX_PLEN) |
1235  V_CMD_GEN2(gen);
1236  first_desc_len = (desc_len <= SGE_TX_DESC_MAX_PLEN) ?
1237  desc_len : SGE_TX_DESC_MAX_PLEN;
1238  e->addr_lo = (u32)desc_mapping;
1239  e->addr_hi = (u64)desc_mapping >> 32;
1240  e->len_gen = V_CMD_LEN(first_desc_len) | V_CMD_GEN1(gen);
1241  ce->skb = NULL;
1242  dma_unmap_len_set(ce, dma_len, 0);
1243 
1245  desc_len > SGE_TX_DESC_MAX_PLEN) {
1246  desc_mapping += first_desc_len;
1247  desc_len -= first_desc_len;
1248  e1++;
1249  ce++;
1250  if (++pidx == q->size) {
1251  pidx = 0;
1252  gen ^= 1;
1253  e1 = q->entries;
1254  ce = q->centries;
1255  }
1256  pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1257  &desc_mapping, &desc_len,
1258  nfrags, q);
1259 
1260  if (likely(desc_len))
1261  write_tx_desc(e1, desc_mapping, desc_len, gen,
1262  nfrags == 0);
1263  }
1264 
1265  ce->skb = NULL;
1266  dma_unmap_addr_set(ce, dma_addr, mapping);
1267  dma_unmap_len_set(ce, dma_len, skb_headlen(skb));
1268 
1269  for (i = 0; nfrags--; i++) {
1270  skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1271  e1++;
1272  ce++;
1273  if (++pidx == q->size) {
1274  pidx = 0;
1275  gen ^= 1;
1276  e1 = q->entries;
1277  ce = q->centries;
1278  }
1279 
1280  mapping = skb_frag_dma_map(&adapter->pdev->dev, frag, 0,
1281  skb_frag_size(frag), DMA_TO_DEVICE);
1282  desc_mapping = mapping;
1283  desc_len = skb_frag_size(frag);
1284 
1285  pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1286  &desc_mapping, &desc_len,
1287  nfrags, q);
1288  if (likely(desc_len))
1289  write_tx_desc(e1, desc_mapping, desc_len, gen,
1290  nfrags == 0);
1291  ce->skb = NULL;
1292  dma_unmap_addr_set(ce, dma_addr, mapping);
1293  dma_unmap_len_set(ce, dma_len, skb_frag_size(frag));
1294  }
1295  ce->skb = skb;
1296  wmb();
1297  e->flags = flags;
1298 }
1299 
1300 /*
1301  * Clean up completed Tx buffers.
1302  */
1303 static inline void reclaim_completed_tx(struct sge *sge, struct cmdQ *q)
1304 {
1305  unsigned int reclaim = q->processed - q->cleaned;
1306 
1307  if (reclaim) {
1308  pr_debug("reclaim_completed_tx processed:%d cleaned:%d\n",
1309  q->processed, q->cleaned);
1310  free_cmdQ_buffers(sge, q, reclaim);
1311  q->cleaned += reclaim;
1312  }
1313 }
1314 
1315 /*
1316  * Called from tasklet. Checks the scheduler for any
1317  * pending skbs that can be sent.
1318  */
1319 static void restart_sched(unsigned long arg)
1320 {
1321  struct sge *sge = (struct sge *) arg;
1322  struct adapter *adapter = sge->adapter;
1323  struct cmdQ *q = &sge->cmdQ[0];
1324  struct sk_buff *skb;
1325  unsigned int credits, queued_skb = 0;
1326 
1327  spin_lock(&q->lock);
1328  reclaim_completed_tx(sge, q);
1329 
1330  credits = q->size - q->in_use;
1331  pr_debug("restart_sched credits=%d\n", credits);
1332  while ((skb = sched_skb(sge, NULL, credits)) != NULL) {
1333  unsigned int genbit, pidx, count;
1334  count = 1 + skb_shinfo(skb)->nr_frags;
1335  count += compute_large_page_tx_descs(skb);
1336  q->in_use += count;
1337  genbit = q->genbit;
1338  pidx = q->pidx;
1339  q->pidx += count;
1340  if (q->pidx >= q->size) {
1341  q->pidx -= q->size;
1342  q->genbit ^= 1;
1343  }
1344  write_tx_descs(adapter, skb, pidx, genbit, q);
1345  credits = q->size - q->in_use;
1346  queued_skb = 1;
1347  }
1348 
1349  if (queued_skb) {
1351  if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1353  writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1354  }
1355  }
1356  spin_unlock(&q->lock);
1357 }
1358 
1367 static void sge_rx(struct sge *sge, struct freelQ *fl, unsigned int len)
1368 {
1369  struct sk_buff *skb;
1370  const struct cpl_rx_pkt *p;
1371  struct adapter *adapter = sge->adapter;
1372  struct sge_port_stats *st;
1373  struct net_device *dev;
1374 
1375  skb = get_packet(adapter->pdev, fl, len - sge->rx_pkt_pad);
1376  if (unlikely(!skb)) {
1377  sge->stats.rx_drops++;
1378  return;
1379  }
1380 
1381  p = (const struct cpl_rx_pkt *) skb->data;
1382  if (p->iff >= adapter->params.nports) {
1383  kfree_skb(skb);
1384  return;
1385  }
1386  __skb_pull(skb, sizeof(*p));
1387 
1388  st = this_cpu_ptr(sge->port_stats[p->iff]);
1389  dev = adapter->port[p->iff].dev;
1390 
1391  skb->protocol = eth_type_trans(skb, dev);
1392  if ((dev->features & NETIF_F_RXCSUM) && p->csum == 0xffff &&
1393  skb->protocol == htons(ETH_P_IP) &&
1394  (skb->data[9] == IPPROTO_TCP || skb->data[9] == IPPROTO_UDP)) {
1395  ++st->rx_cso_good;
1397  } else
1398  skb_checksum_none_assert(skb);
1399 
1400  if (p->vlan_valid) {
1401  st->vlan_xtract++;
1402  __vlan_hwaccel_put_tag(skb, ntohs(p->vlan));
1403  }
1404  netif_receive_skb(skb);
1405 }
1406 
1407 /*
1408  * Returns true if a command queue has enough available descriptors that
1409  * we can resume Tx operation after temporarily disabling its packet queue.
1410  */
1411 static inline int enough_free_Tx_descs(const struct cmdQ *q)
1412 {
1413  unsigned int r = q->processed - q->cleaned;
1414 
1415  return q->in_use - r < (q->size >> 1);
1416 }
1417 
1418 /*
1419  * Called when sufficient space has become available in the SGE command queues
1420  * after the Tx packet schedulers have been suspended to restart the Tx path.
1421  */
1422 static void restart_tx_queues(struct sge *sge)
1423 {
1424  struct adapter *adap = sge->adapter;
1425  int i;
1426 
1427  if (!enough_free_Tx_descs(&sge->cmdQ[0]))
1428  return;
1429 
1430  for_each_port(adap, i) {
1431  struct net_device *nd = adap->port[i].dev;
1432 
1433  if (test_and_clear_bit(nd->if_port, &sge->stopped_tx_queues) &&
1434  netif_running(nd)) {
1435  sge->stats.cmdQ_restarted[2]++;
1436  netif_wake_queue(nd);
1437  }
1438  }
1439 }
1440 
1441 /*
1442  * update_tx_info is called from the interrupt handler/NAPI to return cmdQ0
1443  * information.
1444  */
1445 static unsigned int update_tx_info(struct adapter *adapter,
1446  unsigned int flags,
1447  unsigned int pr0)
1448 {
1449  struct sge *sge = adapter->sge;
1450  struct cmdQ *cmdq = &sge->cmdQ[0];
1451 
1452  cmdq->processed += pr0;
1453  if (flags & (F_FL0_ENABLE | F_FL1_ENABLE)) {
1454  freelQs_empty(sge);
1455  flags &= ~(F_FL0_ENABLE | F_FL1_ENABLE);
1456  }
1457  if (flags & F_CMDQ0_ENABLE) {
1459 
1460  if (cmdq->cleaned + cmdq->in_use != cmdq->processed &&
1462  set_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1463  writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1464  }
1465  if (sge->tx_sched)
1466  tasklet_hi_schedule(&sge->tx_sched->sched_tsk);
1467 
1468  flags &= ~F_CMDQ0_ENABLE;
1469  }
1470 
1471  if (unlikely(sge->stopped_tx_queues != 0))
1472  restart_tx_queues(sge);
1473 
1474  return flags;
1475 }
1476 
1477 /*
1478  * Process SGE responses, up to the supplied budget. Returns the number of
1479  * responses processed. A negative budget is effectively unlimited.
1480  */
1481 static int process_responses(struct adapter *adapter, int budget)
1482 {
1483  struct sge *sge = adapter->sge;
1484  struct respQ *q = &sge->respQ;
1485  struct respQ_e *e = &q->entries[q->cidx];
1486  int done = 0;
1487  unsigned int flags = 0;
1488  unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1489 
1490  while (done < budget && e->GenerationBit == q->genbit) {
1491  flags |= e->Qsleeping;
1492 
1493  cmdq_processed[0] += e->Cmdq0CreditReturn;
1494  cmdq_processed[1] += e->Cmdq1CreditReturn;
1495 
1496  /* We batch updates to the TX side to avoid cacheline
1497  * ping-pong of TX state information on MP where the sender
1498  * might run on a different CPU than this function...
1499  */
1500  if (unlikely((flags & F_CMDQ0_ENABLE) || cmdq_processed[0] > 64)) {
1501  flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1502  cmdq_processed[0] = 0;
1503  }
1504 
1505  if (unlikely(cmdq_processed[1] > 16)) {
1506  sge->cmdQ[1].processed += cmdq_processed[1];
1507  cmdq_processed[1] = 0;
1508  }
1509 
1510  if (likely(e->DataValid)) {
1511  struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1512 
1513  BUG_ON(!e->Sop || !e->Eop);
1514  if (unlikely(e->Offload))
1515  unexpected_offload(adapter, fl);
1516  else
1517  sge_rx(sge, fl, e->BufferLength);
1518 
1519  ++done;
1520 
1521  /*
1522  * Note: this depends on each packet consuming a
1523  * single free-list buffer; cf. the BUG above.
1524  */
1525  if (++fl->cidx == fl->size)
1526  fl->cidx = 0;
1527  prefetch(fl->centries[fl->cidx].skb);
1528 
1529  if (unlikely(--fl->credits <
1531  refill_free_list(sge, fl);
1532  } else
1533  sge->stats.pure_rsps++;
1534 
1535  e++;
1536  if (unlikely(++q->cidx == q->size)) {
1537  q->cidx = 0;
1538  q->genbit ^= 1;
1539  e = q->entries;
1540  }
1541  prefetch(e);
1542 
1543  if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1544  writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1545  q->credits = 0;
1546  }
1547  }
1548 
1549  flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1550  sge->cmdQ[1].processed += cmdq_processed[1];
1551 
1552  return done;
1553 }
1554 
1555 static inline int responses_pending(const struct adapter *adapter)
1556 {
1557  const struct respQ *Q = &adapter->sge->respQ;
1558  const struct respQ_e *e = &Q->entries[Q->cidx];
1559 
1560  return e->GenerationBit == Q->genbit;
1561 }
1562 
1563 /*
1564  * A simpler version of process_responses() that handles only pure (i.e.,
1565  * non data-carrying) responses. Such respones are too light-weight to justify
1566  * calling a softirq when using NAPI, so we handle them specially in hard
1567  * interrupt context. The function is called with a pointer to a response,
1568  * which the caller must ensure is a valid pure response. Returns 1 if it
1569  * encounters a valid data-carrying response, 0 otherwise.
1570  */
1571 static int process_pure_responses(struct adapter *adapter)
1572 {
1573  struct sge *sge = adapter->sge;
1574  struct respQ *q = &sge->respQ;
1575  struct respQ_e *e = &q->entries[q->cidx];
1576  const struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1577  unsigned int flags = 0;
1578  unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1579 
1580  prefetch(fl->centries[fl->cidx].skb);
1581  if (e->DataValid)
1582  return 1;
1583 
1584  do {
1585  flags |= e->Qsleeping;
1586 
1587  cmdq_processed[0] += e->Cmdq0CreditReturn;
1588  cmdq_processed[1] += e->Cmdq1CreditReturn;
1589 
1590  e++;
1591  if (unlikely(++q->cidx == q->size)) {
1592  q->cidx = 0;
1593  q->genbit ^= 1;
1594  e = q->entries;
1595  }
1596  prefetch(e);
1597 
1598  if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1599  writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1600  q->credits = 0;
1601  }
1602  sge->stats.pure_rsps++;
1603  } while (e->GenerationBit == q->genbit && !e->DataValid);
1604 
1605  flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1606  sge->cmdQ[1].processed += cmdq_processed[1];
1607 
1608  return e->GenerationBit == q->genbit;
1609 }
1610 
1611 /*
1612  * Handler for new data events when using NAPI. This does not need any locking
1613  * or protection from interrupts as data interrupts are off at this point and
1614  * other adapter interrupts do not interfere.
1615  */
1616 int t1_poll(struct napi_struct *napi, int budget)
1617 {
1618  struct adapter *adapter = container_of(napi, struct adapter, napi);
1619  int work_done = process_responses(adapter, budget);
1620 
1621  if (likely(work_done < budget)) {
1622  napi_complete(napi);
1623  writel(adapter->sge->respQ.cidx,
1624  adapter->regs + A_SG_SLEEPING);
1625  }
1626  return work_done;
1627 }
1628 
1630 {
1631  struct adapter *adapter = data;
1632  struct sge *sge = adapter->sge;
1633  int handled;
1634 
1635  if (likely(responses_pending(adapter))) {
1637 
1638  if (napi_schedule_prep(&adapter->napi)) {
1639  if (process_pure_responses(adapter))
1640  __napi_schedule(&adapter->napi);
1641  else {
1642  /* no data, no NAPI needed */
1643  writel(sge->respQ.cidx, adapter->regs + A_SG_SLEEPING);
1644  /* undo schedule_prep */
1645  napi_enable(&adapter->napi);
1646  }
1647  }
1648  return IRQ_HANDLED;
1649  }
1650 
1651  spin_lock(&adapter->async_lock);
1652  handled = t1_slow_intr_handler(adapter);
1653  spin_unlock(&adapter->async_lock);
1654 
1655  if (!handled)
1656  sge->stats.unhandled_irqs++;
1657 
1658  return IRQ_RETVAL(handled != 0);
1659 }
1660 
1661 /*
1662  * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it.
1663  *
1664  * The code figures out how many entries the sk_buff will require in the
1665  * cmdQ and updates the cmdQ data structure with the state once the enqueue
1666  * has complete. Then, it doesn't access the global structure anymore, but
1667  * uses the corresponding fields on the stack. In conjunction with a spinlock
1668  * around that code, we can make the function reentrant without holding the
1669  * lock when we actually enqueue (which might be expensive, especially on
1670  * architectures with IO MMUs).
1671  *
1672  * This runs with softirqs disabled.
1673  */
1674 static int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter,
1675  unsigned int qid, struct net_device *dev)
1676 {
1677  struct sge *sge = adapter->sge;
1678  struct cmdQ *q = &sge->cmdQ[qid];
1679  unsigned int credits, pidx, genbit, count, use_sched_skb = 0;
1680 
1681  if (!spin_trylock(&q->lock))
1682  return NETDEV_TX_LOCKED;
1683 
1684  reclaim_completed_tx(sge, q);
1685 
1686  pidx = q->pidx;
1687  credits = q->size - q->in_use;
1688  count = 1 + skb_shinfo(skb)->nr_frags;
1689  count += compute_large_page_tx_descs(skb);
1690 
1691  /* Ethernet packet */
1692  if (unlikely(credits < count)) {
1693  if (!netif_queue_stopped(dev)) {
1694  netif_stop_queue(dev);
1695  set_bit(dev->if_port, &sge->stopped_tx_queues);
1696  sge->stats.cmdQ_full[2]++;
1697  pr_err("%s: Tx ring full while queue awake!\n",
1698  adapter->name);
1699  }
1700  spin_unlock(&q->lock);
1701  return NETDEV_TX_BUSY;
1702  }
1703 
1704  if (unlikely(credits - count < q->stop_thres)) {
1705  netif_stop_queue(dev);
1706  set_bit(dev->if_port, &sge->stopped_tx_queues);
1707  sge->stats.cmdQ_full[2]++;
1708  }
1709 
1710  /* T204 cmdQ0 skbs that are destined for a certain port have to go
1711  * through the scheduler.
1712  */
1713  if (sge->tx_sched && !qid && skb->dev) {
1714 use_sched:
1715  use_sched_skb = 1;
1716  /* Note that the scheduler might return a different skb than
1717  * the one passed in.
1718  */
1719  skb = sched_skb(sge, skb, credits);
1720  if (!skb) {
1721  spin_unlock(&q->lock);
1722  return NETDEV_TX_OK;
1723  }
1724  pidx = q->pidx;
1725  count = 1 + skb_shinfo(skb)->nr_frags;
1726  count += compute_large_page_tx_descs(skb);
1727  }
1728 
1729  q->in_use += count;
1730  genbit = q->genbit;
1731  pidx = q->pidx;
1732  q->pidx += count;
1733  if (q->pidx >= q->size) {
1734  q->pidx -= q->size;
1735  q->genbit ^= 1;
1736  }
1737  spin_unlock(&q->lock);
1738 
1739  write_tx_descs(adapter, skb, pidx, genbit, q);
1740 
1741  /*
1742  * We always ring the doorbell for cmdQ1. For cmdQ0, we only ring
1743  * the doorbell if the Q is asleep. There is a natural race, where
1744  * the hardware is going to sleep just after we checked, however,
1745  * then the interrupt handler will detect the outstanding TX packet
1746  * and ring the doorbell for us.
1747  */
1748  if (qid)
1749  doorbell_pio(adapter, F_CMDQ1_ENABLE);
1750  else {
1752  if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1754  writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1755  }
1756  }
1757 
1758  if (use_sched_skb) {
1759  if (spin_trylock(&q->lock)) {
1760  credits = q->size - q->in_use;
1761  skb = NULL;
1762  goto use_sched;
1763  }
1764  }
1765  return NETDEV_TX_OK;
1766 }
1767 
1768 #define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14))
1769 
1770 /*
1771  * eth_hdr_len - return the length of an Ethernet header
1772  * @data: pointer to the start of the Ethernet header
1773  *
1774  * Returns the length of an Ethernet header, including optional VLAN tag.
1775  */
1776 static inline int eth_hdr_len(const void *data)
1777 {
1778  const struct ethhdr *e = data;
1779 
1780  return e->h_proto == htons(ETH_P_8021Q) ? VLAN_ETH_HLEN : ETH_HLEN;
1781 }
1782 
1783 /*
1784  * Adds the CPL header to the sk_buff and passes it to t1_sge_tx.
1785  */
1786 netdev_tx_t t1_start_xmit(struct sk_buff *skb, struct net_device *dev)
1787 {
1788  struct adapter *adapter = dev->ml_priv;
1789  struct sge *sge = adapter->sge;
1790  struct sge_port_stats *st = this_cpu_ptr(sge->port_stats[dev->if_port]);
1791  struct cpl_tx_pkt *cpl;
1792  struct sk_buff *orig_skb = skb;
1793  int ret;
1794 
1795  if (skb->protocol == htons(ETH_P_CPL5))
1796  goto send;
1797 
1798  /*
1799  * We are using a non-standard hard_header_len.
1800  * Allocate more header room in the rare cases it is not big enough.
1801  */
1802  if (unlikely(skb_headroom(skb) < dev->hard_header_len - ETH_HLEN)) {
1803  skb = skb_realloc_headroom(skb, sizeof(struct cpl_tx_pkt_lso));
1804  ++st->tx_need_hdrroom;
1805  dev_kfree_skb_any(orig_skb);
1806  if (!skb)
1807  return NETDEV_TX_OK;
1808  }
1809 
1810  if (skb_shinfo(skb)->gso_size) {
1811  int eth_type;
1812  struct cpl_tx_pkt_lso *hdr;
1813 
1814  ++st->tx_tso;
1815 
1816  eth_type = skb_network_offset(skb) == ETH_HLEN ?
1818 
1819  hdr = (struct cpl_tx_pkt_lso *)skb_push(skb, sizeof(*hdr));
1820  hdr->opcode = CPL_TX_PKT_LSO;
1821  hdr->ip_csum_dis = hdr->l4_csum_dis = 0;
1822  hdr->ip_hdr_words = ip_hdr(skb)->ihl;
1823  hdr->tcp_hdr_words = tcp_hdr(skb)->doff;
1824  hdr->eth_type_mss = htons(MK_ETH_TYPE_MSS(eth_type,
1825  skb_shinfo(skb)->gso_size));
1826  hdr->len = htonl(skb->len - sizeof(*hdr));
1827  cpl = (struct cpl_tx_pkt *)hdr;
1828  } else {
1829  /*
1830  * Packets shorter than ETH_HLEN can break the MAC, drop them
1831  * early. Also, we may get oversized packets because some
1832  * parts of the kernel don't handle our unusual hard_header_len
1833  * right, drop those too.
1834  */
1835  if (unlikely(skb->len < ETH_HLEN ||
1836  skb->len > dev->mtu + eth_hdr_len(skb->data))) {
1837  pr_debug("%s: packet size %d hdr %d mtu%d\n", dev->name,
1838  skb->len, eth_hdr_len(skb->data), dev->mtu);
1839  dev_kfree_skb_any(skb);
1840  return NETDEV_TX_OK;
1841  }
1842 
1843  if (skb->ip_summed == CHECKSUM_PARTIAL &&
1844  ip_hdr(skb)->protocol == IPPROTO_UDP) {
1845  if (unlikely(skb_checksum_help(skb))) {
1846  pr_debug("%s: unable to do udp checksum\n", dev->name);
1847  dev_kfree_skb_any(skb);
1848  return NETDEV_TX_OK;
1849  }
1850  }
1851 
1852  /* Hmmm, assuming to catch the gratious arp... and we'll use
1853  * it to flush out stuck espi packets...
1854  */
1855  if ((unlikely(!adapter->sge->espibug_skb[dev->if_port]))) {
1856  if (skb->protocol == htons(ETH_P_ARP) &&
1857  arp_hdr(skb)->ar_op == htons(ARPOP_REQUEST)) {
1858  adapter->sge->espibug_skb[dev->if_port] = skb;
1859  /* We want to re-use this skb later. We
1860  * simply bump the reference count and it
1861  * will not be freed...
1862  */
1863  skb = skb_get(skb);
1864  }
1865  }
1866 
1867  cpl = (struct cpl_tx_pkt *)__skb_push(skb, sizeof(*cpl));
1868  cpl->opcode = CPL_TX_PKT;
1869  cpl->ip_csum_dis = 1; /* SW calculates IP csum */
1870  cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_PARTIAL ? 0 : 1;
1871  /* the length field isn't used so don't bother setting it */
1872 
1873  st->tx_cso += (skb->ip_summed == CHECKSUM_PARTIAL);
1874  }
1875  cpl->iff = dev->if_port;
1876 
1877  if (vlan_tx_tag_present(skb)) {
1878  cpl->vlan_valid = 1;
1879  cpl->vlan = htons(vlan_tx_tag_get(skb));
1880  st->vlan_insert++;
1881  } else
1882  cpl->vlan_valid = 0;
1883 
1884 send:
1885  ret = t1_sge_tx(skb, adapter, 0, dev);
1886 
1887  /* If transmit busy, and we reallocated skb's due to headroom limit,
1888  * then silently discard to avoid leak.
1889  */
1890  if (unlikely(ret != NETDEV_TX_OK && skb != orig_skb)) {
1891  dev_kfree_skb_any(skb);
1892  ret = NETDEV_TX_OK;
1893  }
1894  return ret;
1895 }
1896 
1897 /*
1898  * Callback for the Tx buffer reclaim timer. Runs with softirqs disabled.
1899  */
1900 static void sge_tx_reclaim_cb(unsigned long data)
1901 {
1902  int i;
1903  struct sge *sge = (struct sge *)data;
1904 
1905  for (i = 0; i < SGE_CMDQ_N; ++i) {
1906  struct cmdQ *q = &sge->cmdQ[i];
1907 
1908  if (!spin_trylock(&q->lock))
1909  continue;
1910 
1911  reclaim_completed_tx(sge, q);
1912  if (i == 0 && q->in_use) { /* flush pending credits */
1913  writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
1914  }
1915  spin_unlock(&q->lock);
1916  }
1917  mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
1918 }
1919 
1920 /*
1921  * Propagate changes of the SGE coalescing parameters to the HW.
1922  */
1923 int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p)
1924 {
1926  core_ticks_per_usec(sge->adapter);
1927  writel(sge->fixed_intrtimer, sge->adapter->regs + A_SG_INTRTIMER);
1928  return 0;
1929 }
1930 
1931 /*
1932  * Allocates both RX and TX resources and configures the SGE. However,
1933  * the hardware is not enabled yet.
1934  */
1935 int t1_sge_configure(struct sge *sge, struct sge_params *p)
1936 {
1937  if (alloc_rx_resources(sge, p))
1938  return -ENOMEM;
1939  if (alloc_tx_resources(sge, p)) {
1940  free_rx_resources(sge);
1941  return -ENOMEM;
1942  }
1943  configure_sge(sge, p);
1944 
1945  /*
1946  * Now that we have sized the free lists calculate the payload
1947  * capacity of the large buffers. Other parts of the driver use
1948  * this to set the max offload coalescing size so that RX packets
1949  * do not overflow our large buffers.
1950  */
1951  p->large_buf_capacity = jumbo_payload_capacity(sge);
1952  return 0;
1953 }
1954 
1955 /*
1956  * Disables the DMA engine.
1957  */
1958 void t1_sge_stop(struct sge *sge)
1959 {
1960  int i;
1961  writel(0, sge->adapter->regs + A_SG_CONTROL);
1962  readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
1963 
1964  if (is_T2(sge->adapter))
1966 
1968  if (sge->tx_sched)
1969  tx_sched_stop(sge);
1970 
1971  for (i = 0; i < MAX_NPORTS; i++)
1972  kfree_skb(sge->espibug_skb[i]);
1973 }
1974 
1975 /*
1976  * Enables the DMA engine.
1977  */
1978 void t1_sge_start(struct sge *sge)
1979 {
1980  refill_free_list(sge, &sge->freelQ[0]);
1981  refill_free_list(sge, &sge->freelQ[1]);
1982 
1983  writel(sge->sge_control, sge->adapter->regs + A_SG_CONTROL);
1984  doorbell_pio(sge->adapter, F_FL0_ENABLE | F_FL1_ENABLE);
1985  readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
1986 
1988 
1989  if (is_T2(sge->adapter))
1991 }
1992 
1993 /*
1994  * Callback for the T2 ESPI 'stuck packet feature' workaorund
1995  */
1996 static void espibug_workaround_t204(unsigned long data)
1997 {
1998  struct adapter *adapter = (struct adapter *)data;
1999  struct sge *sge = adapter->sge;
2000  unsigned int nports = adapter->params.nports;
2001  u32 seop[MAX_NPORTS];
2002 
2003  if (adapter->open_device_map & PORT_MASK) {
2004  int i;
2005 
2006  if (t1_espi_get_mon_t204(adapter, &(seop[0]), 0) < 0)
2007  return;
2008 
2009  for (i = 0; i < nports; i++) {
2010  struct sk_buff *skb = sge->espibug_skb[i];
2011 
2012  if (!netif_running(adapter->port[i].dev) ||
2013  netif_queue_stopped(adapter->port[i].dev) ||
2014  !seop[i] || ((seop[i] & 0xfff) != 0) || !skb)
2015  continue;
2016 
2017  if (!skb->cb[0]) {
2018  skb_copy_to_linear_data_offset(skb,
2019  sizeof(struct cpl_tx_pkt),
2020  ch_mac_addr,
2021  ETH_ALEN);
2022  skb_copy_to_linear_data_offset(skb,
2023  skb->len - 10,
2024  ch_mac_addr,
2025  ETH_ALEN);
2026  skb->cb[0] = 0xff;
2027  }
2028 
2029  /* bump the reference count to avoid freeing of
2030  * the skb once the DMA has completed.
2031  */
2032  skb = skb_get(skb);
2033  t1_sge_tx(skb, adapter, 0, adapter->port[i].dev);
2034  }
2035  }
2036  mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2037 }
2038 
2039 static void espibug_workaround(unsigned long data)
2040 {
2041  struct adapter *adapter = (struct adapter *)data;
2042  struct sge *sge = adapter->sge;
2043 
2044  if (netif_running(adapter->port[0].dev)) {
2045  struct sk_buff *skb = sge->espibug_skb[0];
2046  u32 seop = t1_espi_get_mon(adapter, 0x930, 0);
2047 
2048  if ((seop & 0xfff0fff) == 0xfff && skb) {
2049  if (!skb->cb[0]) {
2050  skb_copy_to_linear_data_offset(skb,
2051  sizeof(struct cpl_tx_pkt),
2052  ch_mac_addr,
2053  ETH_ALEN);
2054  skb_copy_to_linear_data_offset(skb,
2055  skb->len - 10,
2056  ch_mac_addr,
2057  ETH_ALEN);
2058  skb->cb[0] = 0xff;
2059  }
2060 
2061  /* bump the reference count to avoid freeing of the
2062  * skb once the DMA has completed.
2063  */
2064  skb = skb_get(skb);
2065  t1_sge_tx(skb, adapter, 0, adapter->port[0].dev);
2066  }
2067  }
2068  mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2069 }
2070 
2071 /*
2072  * Creates a t1_sge structure and returns suggested resource parameters.
2073  */
2074 struct sge * __devinit t1_sge_create(struct adapter *adapter,
2075  struct sge_params *p)
2076 {
2077  struct sge *sge = kzalloc(sizeof(*sge), GFP_KERNEL);
2078  int i;
2079 
2080  if (!sge)
2081  return NULL;
2082 
2083  sge->adapter = adapter;
2084  sge->netdev = adapter->port[0].dev;
2085  sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : 2;
2086  sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
2087 
2088  for_each_port(adapter, i) {
2089  sge->port_stats[i] = alloc_percpu(struct sge_port_stats);
2090  if (!sge->port_stats[i])
2091  goto nomem_port;
2092  }
2093 
2095  sge->tx_reclaim_timer.data = (unsigned long)sge;
2096  sge->tx_reclaim_timer.function = sge_tx_reclaim_cb;
2097 
2098  if (is_T2(sge->adapter)) {
2099  init_timer(&sge->espibug_timer);
2100 
2101  if (adapter->params.nports > 1) {
2102  tx_sched_init(sge);
2103  sge->espibug_timer.function = espibug_workaround_t204;
2104  } else
2105  sge->espibug_timer.function = espibug_workaround;
2106  sge->espibug_timer.data = (unsigned long)sge->adapter;
2107 
2108  sge->espibug_timeout = 1;
2109  /* for T204, every 10ms */
2110  if (adapter->params.nports > 1)
2111  sge->espibug_timeout = HZ/100;
2112  }
2113 
2114 
2115  p->cmdQ_size[0] = SGE_CMDQ0_E_N;
2116  p->cmdQ_size[1] = SGE_CMDQ1_E_N;
2117  p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE;
2119  if (sge->tx_sched) {
2120  if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204)
2121  p->rx_coalesce_usecs = 15;
2122  else
2123  p->rx_coalesce_usecs = 50;
2124  } else
2125  p->rx_coalesce_usecs = 50;
2126 
2127  p->coalesce_enable = 0;
2128  p->sample_interval_usecs = 0;
2129 
2130  return sge;
2131 nomem_port:
2132  while (i >= 0) {
2133  free_percpu(sge->port_stats[i]);
2134  --i;
2135  }
2136  kfree(sge);
2137  return NULL;
2138 
2139 }